Compute the Cook's distance for each observation from a fitted model object.

# S3 method for ssn_lm
cooks.distance(model, ...)

# S3 method for ssn_glm
cooks.distance(model, ...)

Arguments

model

A fitted model object from ssn_lm() or ssn_glm().

...

Other arguments. Not used (needed for generic consistency).

Value

A vector of Cook's distance values for each observation from the fitted model object.

Details

Cook's distance measures the influence of an observation on a fitted model object. If an observation is influential, its omission from the data noticeably impacts parameter estimates. The larger the Cook's distance, the larger the influence.

Examples

# Copy the mf04p .ssn data to a local directory and read it into R
# When modeling with your .ssn object, you will load it using the relevant
# path to the .ssn data on your machine
copy_lsn_to_temp()
temp_path <- paste0(tempdir(), "/MiddleFork04.ssn")
mf04p <- ssn_import(temp_path, overwrite = TRUE)

ssn_mod <- ssn_lm(
  formula = Summer_mn ~ ELEV_DEM,
  ssn.object = mf04p,
  tailup_type = "exponential",
  additive = "afvArea"
)
cooks.distance(ssn_mod)
#>            1            2            3            4            5            6 
#> 1.647503e-02 1.728298e-03 6.579438e-03 8.927099e-03 1.578560e-02 9.701374e-04 
#>            7            8            9           10           11           12 
#> 5.068794e-05 1.432315e-02 6.663274e-03 1.956699e-02 5.615854e-03 3.310957e-04 
#>           13           14           15           16           17           18 
#> 3.666827e-04 1.131630e-01 3.727255e-02 1.286650e-02 6.826981e-04 6.797500e-05 
#>           19           20           21           22           23           24 
#> 3.876893e-03 1.462109e-04 8.518871e-05 1.666836e-03 2.434997e-03 3.522678e-02 
#>           25           26           27           28           29           30 
#> 9.185776e-02 1.757621e-04 4.823722e-03 9.509376e-02 1.457562e-02 2.230686e-02 
#>           31           32           33           34           35           36 
#> 2.639139e-02 1.328369e-02 1.305442e-03 1.840481e-03 6.386774e-04 3.336002e-04 
#>           37           38           39           40           41           42 
#> 1.436665e-04 1.288808e-01 4.569277e-04 1.439454e-03 4.960449e-03 4.691920e-03 
#>           43           44           45 
#> 1.208746e-02 4.362963e-02 5.795615e-01