The ssn_get_data
function extracts an
sf data.frame for the observation or prediction data from
an SSN
, ssn_lm
, or ssn_glm
object.
ssn_get_data(x, name = "obs")
An object of class SSN
, ssn_lm
, or ssn_glm
.
the internal name of the dataset in the object
x
. For observed values, this will always be "obs", the
default.
An sf data.frame
The internal name
for observed data in objects of
class SSN
is "obs" and it is the
default. If another name
is specified, it must represent a
prediction data set in the SSN
,
ssn_lm
, or ssn_glm
object. For SSN
objects,
these names are obtained using the call names(x$preds)
. For
all other object classes, the names are obtained using the call
names(x$ssn.object$preds)
.
## Extract observed data from an SSN object
# Copy the mf04p .ssn data to a local directory and read it into R
# When modeling with your .ssn object, you will load it using the relevant
# path to the .ssn data on your machine
copy_lsn_to_temp()
temp_path <- paste0(tempdir(), "/MiddleFork04.ssn")
mf04p <- ssn_import(temp_path, predpts = "pred1km", overwrite = TRUE)
obs.df <- ssn_get_data(mf04p)
dim(obs.df)
#> [1] 45 26
## Extract prediction data from an SSN object
names(mf04p$preds)
#> [1] "pred1km"
pred1km.df <- ssn_get_data(mf04p, name = "pred1km")
names(pred1km.df)
#> [1] "rid" "pid" "COMID" "AREAWTMAP" "SLOPE"
#> [6] "ELEV_DEM" "FlowCMS" "AirMEANc" "AirMWMTc" "rcaAreaKm2"
#> [11] "h2oAreaKm2" "ratio" "snapdist" "upDist" "afvArea"
#> [16] "locID" "netID" "netgeom" "geom"
## extract observed data from an ssn_lm object
ssn_mod <- ssn_lm(
formula = Summer_mn ~ ELEV_DEM,
ssn.object = mf04p,
tailup_type = "exponential",
additive = "afvArea"
)
obs.mod.df <- ssn_get_data(ssn_mod)
summary(obs.mod.df)
#> rid pid STREAMNAME COMID
#> Min. : 1.00 Min. : 1 Length:45 Min. :23519297
#> 1st Qu.: 21.00 1st Qu.:12 Class :character 1st Qu.:23519365
#> Median : 42.00 Median :23 Mode :character Median :23519479
#> Mean : 42.27 Mean :23 Mean :23519557
#> 3rd Qu.: 61.00 3rd Qu.:34 3rd Qu.:23519529
#> Max. :110.00 Max. :45 Max. :23522805
#> AREAWTMAP SLOPE ELEV_DEM Source
#> Min. : 786.4 Min. :0.000000 Min. :1923 Length:45
#> 1st Qu.: 968.2 1st Qu.:0.002740 1st Qu.:1952 Class :character
#> Median : 995.2 Median :0.005680 Median :2006 Mode :character
#> Mean : 998.6 Mean :0.006743 Mean :1999
#> 3rd Qu.:1032.7 3rd Qu.:0.008430 3rd Qu.:2026
#> Max. :1130.4 Max. :0.044260 Max. :2085
#> Summer_mn MaxOver20 C16 C20 C24
#> Min. : 8.75 Min. :0.0000 Min. : 0.0 Min. : 0.000 Min. :0
#> 1st Qu.:11.02 1st Qu.:0.0000 1st Qu.:17.0 1st Qu.: 0.000 1st Qu.:0
#> Median :12.06 Median :0.0000 Median :32.0 Median : 0.000 Median :0
#> Mean :12.35 Mean :0.3111 Mean :26.4 Mean : 2.867 Mean :0
#> 3rd Qu.:14.58 3rd Qu.:1.0000 3rd Qu.:39.0 3rd Qu.: 3.000 3rd Qu.:0
#> Max. :15.29 Max. :1.0000 Max. :41.0 Max. :19.000 Max. :0
#> FlowCMS AirMEANc AirMWMTc rcaAreaKm2
#> Min. :28.67 Min. :21.12 Min. :35.1 Min. :0.0234
#> 1st Qu.:28.67 1st Qu.:21.12 1st Qu.:35.1 1st Qu.:0.8613
#> Median :28.67 Median :21.12 Median :35.1 Median :2.1780
#> Mean :28.67 Mean :21.12 Mean :35.1 Mean :2.2958
#> 3rd Qu.:28.67 3rd Qu.:21.12 3rd Qu.:35.1 3rd Qu.:3.3993
#> Max. :28.67 Max. :21.12 Max. :35.1 Max. :5.0175
#> h2oAreaKm2 ratio snapdist upDist
#> Min. : 3.399 Min. :0.0143 Min. :0.000e+00 Min. : 909.9
#> 1st Qu.: 16.790 1st Qu.:0.1967 1st Qu.:0.000e+00 1st Qu.: 6281.2
#> Median : 29.092 Median :0.4720 Median :0.000e+00 Median :10020.0
#> Mean : 36.063 Mean :0.4565 Mean :5.174e-12 Mean :10176.9
#> 3rd Qu.: 46.260 3rd Qu.:0.6936 3rd Qu.:0.000e+00 3rd Qu.:14295.2
#> Max. :124.250 Max. :0.9739 Max. :1.164e-10 Max. :19566.2
#> afvArea locID netID netgeom
#> Min. :0.05144 Min. : 1 Min. :1.000 Length:45
#> 1st Qu.:0.15212 1st Qu.:12 1st Qu.:1.000 Class :character
#> Median :0.17089 Median :23 Median :2.000 Mode :character
#> Mean :0.24583 Mean :23 Mean :1.711
#> 3rd Qu.:0.29944 3rd Qu.:34 3rd Qu.:2.000
#> Max. :1.00000 Max. :45 Max. :2.000
#> geometry
#> POINT :45
#> epsg:NA : 0
#> +proj=aea ...: 0
#>
#>
#>