User community#

This page is intended to capture research using WNTR and will be updated periodically. If users have related software or a publication that they would like to add to this page, please email the contacts listed on the WNTR GitHub webpage (USEPA/WNTR) or submit a pull request with the update.

Publications#

  • N. Abdel-Mottaleb, P. Ghasemi Saghand, H. Charkhgard, and Q. Zhang. An exact multiobjective optimization approach for evaluating water distribution infrastructure criticality and geospatial interdependence. Water Resources Research, 55(7):5255–5276, 2019. doi:10.1029/2018WR024063.

  • Ariel Antonowicz, Alicja Bałut, Andrzej Urbaniak, and Przemysław Zakrzewski. Algorithm for early warning system for contamination in water network. In 2019 20th International Carpathian Control Conference (ICCC), 1–5. 2019. doi:10.1109/CarpathianCC.2019.8765966.

  • Ariel Antonowicz and Andrzej Urbaniak. Optimization of the process of restoring the continuity of the wds based on the matrix and genetic algorithm approach. Bulletin of the Polish Academy of Sciences: Technical Sciences, 70(4):e141594, 2022. doi:10.24425/bpasts.2022.141594.

  • Martin Bjerke. Leak detection in water distribution networks using gated recurrent neural networks. Master's thesis, Norwegian University of Science and Technology (NTNU), 2019. URL: http://hdl.handle.net/11250/2625834.

  • Brendan B. Bunn. An operational model of interdependent water and power distribution infrastructure systems. Master's thesis, Naval Postgraduate School, Monterey, CA, 2018. URL: https://apps.dtic.mil/sti/citations/AD1065269.

  • Xudong Fan, Xijin Zhang, and Xiong (Bill) Yu. Machine learning model and strategy for fast and accurate detection of leaks in water supply network. Journal of Infrastructure Preservation and Resilience, 2(1):10, Apr 2021. doi:10.1186/s43065-021-00021-6.

  • Qing Han, Ronald Eguchi, Sharad Mehrotra, and Nalini Venkatasubramanian. Enabling state estimation for fault identification in water distribution systems under large disasters. In 2018 IEEE 37th Symposium on Reliable Distributed Systems (SRDS), 161–170. 2018. doi:10.1109/SRDS.2018.00027.

  • Qing Han, Sharad Mehrotra, and Nalini Venkatasubramanian. Aquaeis: middleware support for event identification in community water infrastructures. In Proceedings of the 20th International Middleware Conference (Middleware '19), 293–305. New York, NY, USA, 2019. Association for Computing Machinery. doi:10.1145/3361525.3361554.

  • Honglan Huang and Henry V. Burton. Dynamic seismic damage assessment of distributed infrastructure systems using graph neural networks and semi-supervised machine learning. Advances in Engineering Software, 168:103113, 2022. doi:10.1016/j.advengsoft.2022.103113.

  • Leandro Iannacone, Neetesh Sharma, Armin Tabandeh, and Paolo Gardoni. Modeling time-varying reliability and resilience of deteriorating infrastructure. Reliability Engineering & System Safety, 217:108074, 2022. doi:10.1016/j.ress.2021.108074.

  • Maryam Kammoun, Amina Kammoun, and Mohamed Abid. Experiments based comparative evaluations of machine learning techniques for leak detection in water distribution systems. Water Supply, 22(1):628–642, 2022. doi:10.2166/ws.2021.248.

  • Jun Liu and Yinyin Kang. Segment-based resilience response and intervention evaluation of water distribution systems. AQUA – Water Infrastructure, Ecosystems and Society, 71(1):100–109, 11 2022. doi:10.2166/aqua.2021.133.

  • Yang Liu, Clayton Barrows, Jordan Macknick, and Meagan Mauter. Optimization framework to assess the demand response capacity of a water distribution system. Journal of Water Resources Planning and Management, 146(8):04020063, 2020. doi:10.1061/(ASCE)WR.1943-5452.0001258.

  • Kevin T. Logan, Michaela Leštáková, Nadja Thiessen, Jens Ivo Engels, and Peter F. Pelz. Water distribution in a socio-technical system: resilience assessment for critical events causing demand relocation. Water, 13(15):2062, 2021. doi:10.3390/w13152062.

  • Imke-Sophie Lorenz and Peter F. Pelz. Optimal resilience enhancement of water distribution systems. Water, 12(9):2602, 2020. doi:10.3390/w12092602.

  • Malvin S. Marlim and Doosun Kang. Contaminant flushing in water distribution networks incorporating customer faucet control. Sustainability, 14(4):2249, 2022. doi:10.3390/su14042249.

  • Ram K. Mazumder, Abdullahi M. Salman, and Yue Li. Post-disaster sequential recovery planning for water distribution systems using topological and hydraulic metrics. Structure and Infrastructure Engineering, 18(5):728–743, 2022. doi:10.1080/15732479.2020.1864415.

  • Ram Krishna Mazumder, Abdullahi Salman, Yue Li, and Xiong Yu. A decision-making framework for water distribution systems using fuzzy inference and centrality analysis. In 13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13, May 26-30, 2019, Seoul, South Korea. 2019.

  • Andres Murillo, Riccardo Taormina, Nils Tippenhauer, and Stefano Galelli. Co-simulating physical processes and network data for high-fidelity cyber-security experiments. In Sixth Annual Industrial Control System Security (ICSS) Workshop, 13–20. New York, NY, 2021. Association for Computing Machinery. doi:10.1145/3442144.3442147.

  • Dionysios Nikolopoulos, Panagiotis Kossieris, Ioannis Tsoukalas, and Christos Makropoulos. Stress-testing framework for urban water systems: a source to tap approach for stochastic resilience assessment. Water, 14(2):154, 2022. doi:10.3390/w14020154.

  • Dionysios Nikolopoulos and Christos Makropoulos. Stress-testing water distribution networks for cyber-physical attacks on water quality. Urban Water Journal, 19(3):256–270, 2022. doi:10.1080/1573062X.2021.1995446.

  • Dionysios Nikolopoulos, Georgios Moraitis, Dimitrios Bouziotas, Archontia Lykou, George Karavokiros, and Christos Makropoulos. Cyber-physical stress-testing platform for water distribution networks. Journal of Environmental Engineering, 146(7):04020061, 2020. doi:10.1061/(ASCE)EE.1943-7870.0001722.

  • Dionysios Nikolopoulos, Avi Ostfeld, Elad Salomons, and Christos Makropoulos. Resilience assessment of water quality sensor designs under cyber-physical attacks. Water, 13(5):647, 2021. doi:10.3390/w13050647.

  • Passwell Pepukai Nyahora, Mukand Singh Babel, David Ferras, and Andres Emen. Multi-objective optimization for improving equity and reliability in intermittent water supply systems. Water Supply, 20(5):1592–1603, 2020. doi:10.2166/ws.2020.066.

  • Alessio Pagani, Zhuangkun Wei, Ricardo Silva, and Weisi Guo. Neural network approximation of graph fourier transform for sparse sampling of networked dynamics. ACM Trans. Internet Technol., 2021. arXiv:2002.05508, doi:10.1145/3461838.

  • Armin Rahimi-Golkhandan, Babak Aslani, and Shima Mohebbi. Predictive resilience of interdependent water and transportation infrastructures: a sociotechnical approach. Socio-Economic Planning Sciences, 80:101166, 2022. doi:10.1016/j.seps.2021.101166.

  • Aruna Randeniya, Mohanasundar Radhakrishnan, T. A. J. G. Sirisena, Ilyas Masih, and Assela Pathirana. Equity–performance trade-off in water rationing regimes with domestic storage. Water Supply, 22(5):4781–4797, 2022. doi:10.2166/ws.2022.188.

  • Neetesh Sharma, Armin Tabandeh, and Paolo Gardoni. Recovery optimization of interdependent infrastructure: a multi-scale approach. In 13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13, Seoul, South Korea. 2019.

  • Neetesh Sharma, Armin Tabandeh, and Paolo Gardoni. Regional resilience analysis: a multiscale approach to optimize the resilience of interdependent infrastructure. Computer-Aided Civil and Infrastructure Engineering, 35(12):1315–1330, 2020. doi:10.1111/mice.12606.

  • Armin Tabandeh, Neetesh Sharma, and Paolo Gardoni. Uncertainty propagation in risk and resilience analysis of hierarchical systems. Reliability Engineering & System Safety, 219:108208, 2022. doi:10.1016/j.ress.2021.108208.

  • Seyedarmin Tabandeh. Societal risk and resilience analysis: A multi-scale approach to model the dynamics of infrastructure-social systems. PhD thesis, University of Illinois at Urbana-Champaign, 2018.

  • Agam Tomar, Henry V. Burton, Ali Mosleh, and Ji Yun Lee. Hindcasting the functional loss and restoration of the napa water system following the 2014 earthquake using discrete-event simulation. Journal of Infrastructure Systems, 26(4):04020035, 2020. doi:10.1061/(ASCE)IS.1943-555X.0000574.

  • S.G. Vrachimis, M.S. Kyriakou, Demetrios G. Eliades, and Marios M.Polycarpou. Leakdb: a benchmark dataset for leakage diagnosis in water distribution networks. In 1st International WDSA/CCWI Joint Conference Proceedings, volume 1. 2018. URL: https://ojs.library.queensu.ca/index.php/wdsa-ccw/article/view/12315.

  • Stelios G. Vrachimis, Demetrios G. Eliades, and Marios M. Polycarpou. Leak detection in water distribution systems using hydraulic interval state estimation. In 2018 IEEE Conference on Control Technology and Applications (CCTA), volume, 565–570. 2018. doi:10.1109/CCTA.2018.8511516.

  • Dominik Wille. Simulation-optimization for operational resilience of interdependent water-power systems in the US Virgin Islands. Doctoral dissertation, Naval Postgraduate School, Monterey, CA, 2019. URL: https://hdl.handle.net/10945/64098.

  • Lu Xing and Lina Sela. Transient simulations in water distribution networks: TSNet python package. Advances in Engineering Software, 149:102884, 2020. doi:10.1016/j.advengsoft.2020.102884.