Panel revisit design characteristics are summarized: number of panels, number of time periods, total number of sample events for the revisit design, total number of sample events for each panel, total number of sample events for each time period and cumulative number of unique units sampled by time periods.
pd_summary(object, visitdsgn = NULL, ...)
Two-dimensional array from panel_design
and dimnames specifying revisit
panel design. Typically, array is output from revisit_dsgn
, revisit_bibd
or
revisit_rand
functions.
Two-dimensional array with same dimensions as paneldsgn
specifying the number of times a sample unit is sampled at each time
period. Default is visitdsgn=NULL
, where default assumes that a sample unit
will be sampled only once at each time period.
Additional arguments (S3 consistency)
List of six elements.
n_panel
number of panels in revisit design
n_period
number of time periods in revisit design
n_total
total number of sample events across all panels and all
time periods, accounting for visitdsgn
, that will be sampled in the revisit
design
n_periodunit
vector of the number of time periods a unit will be sampled in each panel
n_unitpnl
vector of the number of sample units, accounting for
visitdsgn
, that will be sampled in each panel
n_unitperiod
vector of the number of sample units, accounting for
visitdsgn
, that will be sampled during each time period
ncum_unit
vector of the cumulative number of unique units that will be sampled in time periods up to and including the current time period.
The revisit panel design and the visit design (if present) are summarized. Summaries can be useful to know the effort required to complete the survey design. See the values returned for the summaries that are produced.
# Serially alternating panel revisit design summary
sa_dsgn <- revisit_dsgn(20, panels = list(SA60N = list(
n = 60, pnl_dsgn = c(1, 4),
pnl_n = NA, start_option = "None"
)), begin = 1)
pd_summary(sa_dsgn)
#> $n_panel
#> [1] 5
#>
#> $n_period
#> [1] 20
#>
#> $n_total
#> [1] 1200
#>
#> $n_periodunit
#> SA60N_1 SA60N_2 SA60N_3 SA60N_4 SA60N_5
#> 4 4 4 4 4
#>
#> $n_unitpnl
#> SA60N_1 SA60N_2 SA60N_3 SA60N_4 SA60N_5
#> 240 240 240 240 240
#>
#> $n_unitperiod
#> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#> 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60
#>
#> $ncum_unit
#> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#> 60 120 180 240 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300
#>
# Add visit design where first panel is sampled twice at every time period
sa_visit <- sa_dsgn
sa_visit[sa_visit > 0] <- 1
sa_visit[1, sa_visit[1, ] > 0] <- 2
pd_summary(sa_dsgn, sa_visit)
#> $n_panel
#> [1] 5
#>
#> $n_period
#> [1] 20
#>
#> $n_total
#> [1] 1440
#>
#> $n_periodunit
#> SA60N_1 SA60N_2 SA60N_3 SA60N_4 SA60N_5
#> 8 4 4 4 4
#>
#> $n_unitpnl
#> SA60N_1 SA60N_2 SA60N_3 SA60N_4 SA60N_5
#> 480 240 240 240 240
#>
#> $n_unitperiod
#> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#> 120 60 60 60 60 120 60 60 60 60 120 60 60 60 60 120 60 60 60 60
#>
#> $ncum_unit
#> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#> 60 120 180 240 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300
#>