Source code for wntr.graphics.network

"""
The wntr.graphics.network module includes methods plot the
water network model.
"""
import logging
import networkx as nx
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import animation

try:
    import plotly
except:
    plotly = None
try:
    import folium
except:
    folium = None
    
from wntr.graphics.color import custom_colormap

logger = logging.getLogger(__name__)

def _format_node_attribute(node_attribute, wn):
    
    if isinstance(node_attribute, str):
        node_attribute = wn.query_node_attribute(node_attribute)
    if isinstance(node_attribute, list):
        node_attribute = dict(zip(node_attribute,[1]*len(node_attribute)))
    if isinstance(node_attribute, pd.Series):
        node_attribute = dict(node_attribute)
    
    return node_attribute

def _format_link_attribute(link_attribute, wn):
    
    if isinstance(link_attribute, str):
        link_attribute = wn.query_link_attribute(link_attribute)
    if isinstance(link_attribute, list):
        link_attribute = dict(zip(link_attribute,[1]*len(link_attribute)))
    if isinstance(link_attribute, pd.Series):
        link_attribute = dict(link_attribute)
            
    return link_attribute
        
[docs] def plot_network(wn, node_attribute=None, link_attribute=None, title=None, node_size=20, node_range=[None,None], node_alpha=1, node_cmap=None, node_labels=False, link_width=1, link_range=[None,None], link_alpha=1, link_cmap=None, link_labels=False, add_colorbar=True, node_colorbar_label='Node', link_colorbar_label='Link', directed=False, ax=None, show_plot=True, filename=None): """ Plot network graphic Parameters ---------- wn : wntr WaterNetworkModel A WaterNetworkModel object node_attribute : None, str, list, pd.Series, or dict, optional - If node_attribute is a string, then a node attribute dictionary is created using node_attribute = wn.query_node_attribute(str) - If node_attribute is a list, then each node in the list is given a value of 1. - If node_attribute is a pd.Series, then it should be in the format {nodeid: x} where nodeid is a string and x is a float. - If node_attribute is a dict, then it should be in the format {nodeid: x} where nodeid is a string and x is a float link_attribute : None, str, list, pd.Series, or dict, optional - If link_attribute is a string, then a link attribute dictionary is created using edge_attribute = wn.query_link_attribute(str) - If link_attribute is a list, then each link in the list is given a value of 1. - If link_attribute is a pd.Series, then it should be in the format {linkid: x} where linkid is a string and x is a float. - If link_attribute is a dict, then it should be in the format {linkid: x} where linkid is a string and x is a float. title: str, optional Plot title node_size: int, optional Node size node_range: list, optional Node color range ([None,None] indicates autoscale) node_alpha: int, optional Node transparency node_cmap: matplotlib.pyplot.cm colormap or list of named colors, optional Node colormap node_labels: bool, optional If True, the graph will include each node labelled with its name. link_width: int, optional Link width link_range : list, optional Link color range ([None,None] indicates autoscale) link_alpha : int, optional Link transparency link_cmap: matplotlib.pyplot.cm colormap or list of named colors, optional Link colormap link_labels: bool, optional If True, the graph will include each link labelled with its name. add_colorbar: bool, optional Add colorbar node_colorbar_label: str, optional Node colorbar label link_colorbar_label: str, optional Link colorbar label directed: bool, optional If True, plot the directed graph ax: matplotlib axes object, optional Axes for plotting (None indicates that a new figure with a single axes will be used) show_plot: bool, optional If True, show plot with plt.show() filename : str, optional Filename used to save the figure Returns ------- ax : matplotlib axes object """ if ax is None: # create a new figure plt.figure(facecolor='w', edgecolor='k') ax = plt.gca() # Graph G = wn.to_graph() if not directed: G = G.to_undirected() # Position pos = nx.get_node_attributes(G,'pos') if len(pos) == 0: pos = None # Define node properties add_node_colorbar = add_colorbar if node_attribute is not None: if isinstance(node_attribute, list): if node_cmap is None: node_cmap = ['red', 'red'] add_node_colorbar = False if node_cmap is None: node_cmap = plt.get_cmap('Spectral_r') elif isinstance(node_cmap, list): if len(node_cmap) == 1: node_cmap = node_cmap*2 node_cmap = custom_colormap(len(node_cmap), node_cmap) node_attribute = _format_node_attribute(node_attribute, wn) nodelist,nodecolor = zip(*node_attribute.items()) else: nodelist = None nodecolor = 'k' add_link_colorbar = add_colorbar if link_attribute is not None: if isinstance(link_attribute, list): if link_cmap is None: link_cmap = ['red', 'red'] add_link_colorbar = False if link_cmap is None: link_cmap = plt.get_cmap('Spectral_r') elif isinstance(link_cmap, list): if len(link_cmap) == 1: link_cmap = link_cmap*2 link_cmap = custom_colormap(len(link_cmap), link_cmap) link_attribute = _format_link_attribute(link_attribute, wn) # Replace link_attribute dictionary defined as # {link_name: attr} with {(start_node, end_node, link_name): attr} attr = {} for link_name, value in link_attribute.items(): link = wn.get_link(link_name) attr[(link.start_node_name, link.end_node_name, link_name)] = value link_attribute = attr linklist,linkcolor = zip(*link_attribute.items()) else: linklist = None linkcolor = 'k' if title is not None: ax.set_title(title) edge_background = nx.draw_networkx_edges(G, pos, edge_color='grey', width=0.5, ax=ax) nodes = nx.draw_networkx_nodes(G, pos, nodelist=nodelist, node_color=nodecolor, node_size=node_size, alpha=node_alpha, cmap=node_cmap, vmin=node_range[0], vmax = node_range[1], linewidths=0, ax=ax) edges = nx.draw_networkx_edges(G, pos, edgelist=linklist, arrows=directed, edge_color=linkcolor, width=link_width, alpha=link_alpha, edge_cmap=link_cmap, edge_vmin=link_range[0], edge_vmax=link_range[1], ax=ax) if node_labels: labels = dict(zip(wn.node_name_list, wn.node_name_list)) nx.draw_networkx_labels(G, pos, labels, font_size=7, ax=ax) if link_labels: labels = {} for link_name in wn.link_name_list: link = wn.get_link(link_name) labels[(link.start_node_name, link.end_node_name)] = link_name nx.draw_networkx_edge_labels(G, pos, labels, font_size=7, ax=ax) if add_node_colorbar and node_attribute: clb = plt.colorbar(nodes, shrink=0.5, pad=0, ax=ax) clb.ax.set_title(node_colorbar_label, fontsize=10) if add_link_colorbar and link_attribute: if link_range[0] is None: vmin = min(link_attribute.values()) else: vmin = link_range[0] if link_range[1] is None: vmax = max(link_attribute.values()) else: vmax = link_range[1] sm = plt.cm.ScalarMappable(cmap=link_cmap, norm=plt.Normalize(vmin=vmin, vmax=vmax)) sm.set_array([]) clb = plt.colorbar(sm, shrink=0.5, pad=0.05, ax=ax) clb.ax.set_title(link_colorbar_label, fontsize=10) ax.axis('off') if filename: plt.savefig(filename) if show_plot is True: plt.show(block=False) return ax
[docs] def plot_interactive_network(wn, node_attribute=None, node_attribute_name = 'Value', title=None, node_size=8, node_range=[None,None], node_cmap='Jet', node_labels=True, link_width=1, add_colorbar=True, reverse_colormap=False, figsize=[700, 450], round_ndigits=2, add_to_node_popup=None, filename='plotly_network.html', auto_open=True): """ Create an interactive scalable network graphic using plotly. Parameters ---------- wn : wntr WaterNetworkModel A WaterNetworkModel object node_attribute : None, str, list, pd.Series, or dict, optional - If node_attribute is a string, then a node attribute dictionary is created using node_attribute = wn.query_node_attribute(str) - If node_attribute is a list, then each node in the list is given a value of 1. - If node_attribute is a pd.Series, then it should be in the format {nodeid: x} where nodeid is a string and x is a float. The time index is not used in the plot. - If node_attribute is a dict, then it should be in the format {nodeid: x} where nodeid is a string and x is a float node_attribute_name : str, optional The node attribute name, which is used in the node popup and node legend title : str, optional Plot title node_size : int, optional Node size node_range : list, optional Node range ([None,None] indicates autoscale) node_cmap : palette name string, optional Node colormap, options include Greys, YlGnBu, Greens, YlOrRd, Bluered, RdBu, Reds, Blues, Picnic, Rainbow, Portland, Jet, Hot, Blackbody, Earth, Electric, Viridis node_labels: bool, optional If True, the graph will include each node labelled with its name and attribute value. link_width : int, optional Link width add_colorbar : bool, optional Add colorbar reverse_colormap : bool, optional Reverse colormap figsize: list, optional Figure size in pixels round_ndigits : int, optional Number of digits to round node values used in the label add_to_node_popup : None or pd.DataFrame, optional To add additional information to the node popup, use a DataFrame with node name as index and attributes as values. Column names will be added to the popup along with each value for a given node. filename : string, optional HTML file name auto_open : bool, optional Open the HTML file after creation """ if plotly is None: raise ImportError('plotly is required') # Graph G = wn.to_graph() # Node attribute if node_attribute is not None: if isinstance(node_attribute, list): node_cmap = 'Reds' add_colorbar = False node_attribute = _format_node_attribute(node_attribute, wn) else: add_colorbar = False # Create edge trace edge_trace = plotly.graph_objs.Scatter( x=[], y=[], text=[], hoverinfo='text', mode='lines', line=dict( #colorscale=link_cmap, #reversescale=reverse_colormap, color='#888', #[], width=link_width)) for edge in G.edges(): x0, y0 = G.nodes[edge[0]]['pos'] x1, y1 = G.nodes[edge[1]]['pos'] edge_trace['x'] += tuple([x0, x1, None]) edge_trace['y'] += tuple([y0, y1, None]) # try: # # Add link attributes # link_name = G[edge[0]][edge[1]].keys()[0] # edge_trace['line']['color'] += tuple([pipe_attr[link_name]]) # edge_info = 'Edge ' + str(link_name) # edge_trace['text'] += tuple([edge_info]) # except: # pass # edge_trace['colorbar']['title'] = 'Link colorbar title' # Create node trace node_trace = plotly.graph_objs.Scatter( x=[], y=[], text=[], hoverinfo='text', mode='markers', marker=dict( showscale=add_colorbar, colorscale=node_cmap, cmin=node_range[0], # TODO: Not sure this works cmax=node_range[1], # TODO: Not sure this works reversescale=reverse_colormap, color=[], size=node_size, #opacity=0.75, colorbar=dict( thickness=15, xanchor='left', titleside='right'), line=dict(width=1))) for node in G.nodes(): x, y = G.nodes[node]['pos'] node_trace['x'] += tuple([x]) node_trace['y'] += tuple([y]) try: # Add node attributes node_trace['marker']['color'] += tuple([node_attribute[node]]) #node_trace['marker']['size'].append(node_size) # Add node labels if node_labels: node_info = wn.get_node(node).node_type + ': ' + str(node) + '<br>'+ \ node_attribute_name + ': ' + str(round(node_attribute[node],round_ndigits)) if add_to_node_popup is not None: if node in add_to_node_popup.index: for key, val in add_to_node_popup.loc[node].iteritems(): node_info = node_info + '<br>' + \ key + ': ' + '{:.{prec}f}'.format(val, prec=round_ndigits) node_trace['text'] += tuple([node_info]) except: node_trace['marker']['color'] += tuple(['#888']) if node_labels: node_info = wn.get_node(node).node_type + ': ' + str(node) node_trace['text'] += tuple([node_info]) #node_trace['marker']['size'] += tuple([5]) #node_trace['marker']['colorbar']['title'] = 'Node colorbar title' # Create figure data = [edge_trace, node_trace] layout = plotly.graph_objs.Layout( title=title, titlefont=dict(size=16), showlegend=False, width=figsize[0], height=figsize[1], hovermode='closest', margin=dict(b=20,l=5,r=5,t=40), xaxis=dict(showgrid=False, zeroline=False, showticklabels=False), yaxis=dict(showgrid=False, zeroline=False, showticklabels=False)) fig = plotly.graph_objs.Figure(data=data,layout=layout) if filename: plotly.offline.plot(fig, filename=filename, auto_open=auto_open) else: plotly.offline.plot(fig, auto_open=auto_open)
[docs] def plot_leaflet_network(wn, node_attribute=None, link_attribute=None, node_attribute_name = 'Value', link_attribute_name = 'Value', node_size=2, node_range=[None,None], node_cmap=['cornflowerblue', 'forestgreen', 'gold', 'firebrick'], node_cmap_bins = 'cut', node_labels=True, link_width=2, link_range=[None,None], link_cmap=['cornflowerblue', 'forestgreen', 'gold', 'firebrick'], link_cmap_bins='cut', link_labels=True, add_legend=False, round_ndigits=2, zoom_start=13, add_to_node_popup=None, add_to_link_popup=None, filename='leaflet_network.html'): """ Create an interactive scalable network graphic on a Leaflet map using folium. Parameters ---------- wn : wntr WaterNetworkModel A WaterNetworkModel object node_attribute : None, str, list, pd.Series, or dict, optional - If node_attribute is a string, then a node attribute dictionary is created using node_attribute = wn.query_node_attribute(str) - If node_attribute is a list, then each node in the list is given a value of 1. - If node_attribute is a pd.Series, then it should be in the format {nodeid: x} where nodeid is a string and x is a float. - If node_attribute is a dict, then it should be in the format {nodeid: x} where nodeid is a string and x is a float link_attribute : None, str, list, pd.Series, or dict, optional - If link_attribute is a string, then a link attribute dictionary is created using edge_attribute = wn.query_link_attribute(str) - If link_attribute is a list, then each link in the list is given a value of 1. - If link_attribute is a pd.Series, then it should be in the format {linkid: x} where linkid is a string and x is a float. - If link_attribute is a dict, then it should be in the format {linkid: x} where linkid is a string and x is a float. node_attribute_name : str, optional The node attribute name, which is used in the node popup and node legend link_attribute_name : str, optional The link attribute name, which is used in the link popup and link legend node_size : int, optional Node size node_range : list, optional Node range ([None,None] indicates autoscale) node_cmap : list of color names, optional Node colors node_cmap_bins: string, optional Node color bins, 'cut' or 'qcut' node_labels: bool, optional If True, the graph will include each node labelled with its name. link_width : int, optional Link width link_range : list, optional Link range ([None,None] indicates autoscale) link_cmap : list of color names, optional Link colors link_cmap_bins: string, optional Link color bins, 'cut' or 'qcut' link_labels: bool, optional If True, the graph will include each link labelled with its name. add_legend: bool, optional Add a legend to the map round_ndigits : int, optional Rounds digits in the popup zoom_start : int, optional Zoom start used to set initial scale of the map add_to_node_popup : None or pd.DataFrame, optional To add additional information to the node popup, use a DataFrame with node name as index and attributes as values. Column names will be added to the popup along with each value for a given node. add_to_link_popup : None or pd.DataFrame, optional To add additional information to the link popup, use a DataFrame with link name as index and attributes as values. Column names will be added to the popup along with each value for a given link. filename : str, optional Filename used to save the map """ if folium is None: raise ImportError('folium is required') if node_attribute is not None: if isinstance(node_attribute, list): node_cmap=['red'] node_attribute = _format_node_attribute(node_attribute, wn) node_attribute = pd.Series(node_attribute) if node_range[0] is not None: node_attribute[node_attribute < node_range[0]] = node_range[0] if node_range[1] is not None: node_attribute[node_attribute > node_range[1]] = node_range[1] if node_cmap_bins == 'cut': node_colors, node_bins = pd.cut(node_attribute, len(node_cmap), labels=node_cmap, retbins =True) elif node_cmap_bins == 'qcut': node_colors, node_bins = pd.qcut(node_attribute, len(node_cmap), labels=node_cmap, retbins =True) if link_attribute is not None: if isinstance(link_attribute, list): link_cmap=['red'] link_attribute = _format_link_attribute(link_attribute, wn) link_attribute = pd.Series(link_attribute) if link_range[0] is not None: link_attribute[link_attribute < link_range[0]] = link_range[0] if link_range[1] is not None: link_attribute[link_attribute > link_range[1]] = link_range[1] if link_cmap_bins == 'cut': link_colors, link_bins = pd.cut(link_attribute, len(link_cmap), labels=link_cmap, retbins =True) elif link_cmap_bins == 'qcut': link_colors, link_bins = pd.qcut(link_attribute, len(link_cmap), labels=link_cmap, retbins =True) G = wn.to_graph() pos = nx.get_node_attributes(G,'pos') center = pd.DataFrame(pos).mean(axis=1) m = folium.Map(location=[center.iloc[1], center.iloc[0]], zoom_start=zoom_start, tiles='cartodbpositron') #folium.TileLayer('cartodbpositron').add_to(m) # Node popup node_popup = {k: '' for k in wn.node_name_list} if node_labels: for name, node in wn.nodes(): node_popup[name] = node.node_type + ': ' + name if node_attribute is not None: if name in node_attribute.index: node_popup[name] = node_popup[name] + '<br>' + \ node_attribute_name + ': ' + '{:.{prec}f}'.format(node_attribute[name], prec=round_ndigits) if add_to_node_popup is not None: if name in add_to_node_popup.index: for key, val in add_to_node_popup.loc[name].iteritems(): node_popup[name] = node_popup[name] + '<br>' + \ key + ': ' + '{:.{prec}f}'.format(val, prec=round_ndigits) # Link popup link_popup = {k: '' for k in wn.link_name_list} if link_labels: for name, link in wn.links(): link_popup[name] = link.link_type + ': ' + name if link_attribute is not None: if name in link_attribute.index: link_popup[name] = link_popup[name] + '<br>' + \ link_attribute_name + ': ' + '{:.{prec}f}'.format(link_attribute[name], prec=round_ndigits) if add_to_link_popup is not None: if name in add_to_link_popup.index: for key, val in add_to_link_popup.loc[name].iteritems(): link_popup[name] = link_popup[name] + '<br>' + \ key + ': ' + '{:.{prec}f}'.format(val, prec=round_ndigits) if node_size > 0: for name, node in wn.nodes(): loc = (node.coordinates[1], node.coordinates[0]) radius = node_size color = 'black' if node_labels: popup = node_popup[name] else: popup = None if node_attribute is not None: if name in node_attribute.index: color = node_colors[name] else: radius = 0.1 folium.CircleMarker(loc, popup=popup, color=color, fill=True, fill_color=color, radius=radius, fill_opacity=0.7, opacity=0.7).add_to(m) if link_width > 0: for name, link in wn.links(): start_loc = (link.start_node.coordinates[1], link.start_node.coordinates[0]) end_loc = (link.end_node.coordinates[1], link.end_node.coordinates[0]) weight = link_width color='black' if link_labels: popup = link_popup[name] else: popup = None if link_attribute is not None: if name in link_attribute.index: color = link_colors[name] else: weight = 1.5 folium.PolyLine([start_loc, end_loc], popup=popup, color=color, weight=weight, opacity=0.7).add_to(m) if (add_legend) & ((len(node_cmap) >= 1) or (len(link_cmap) >= 1)): if node_attribute is not None: #Produce node legend height = 50+len(node_cmap)*20 + (int(len(node_attribute_name)/20) + 1)*20 node_legend_html = """<div style="position: fixed; bottom: 50px; left: 50px; width: 150px; height: """+str(height)+"""px; background-color:white;z-index:9999; font-size:14px; "><br> <b><P ALIGN=CENTER>""" + "Node Legend: " + node_attribute_name + """</b> </P>""" for color, val in zip(node_cmap, node_bins[0:-1]): val = '{:.{prec}f}'.format(val, prec=round_ndigits) node_legend_html += """ &emsp;<i class="fa fa-circle fa-1x" style="color:"""+ color +""" "></i> >= """+ val +""" <br>""" node_legend_html += """</div>""" m.get_root().html.add_child(folium.Element(node_legend_html)) if link_attribute is not None: #Produce link legend height = 50+len(link_cmap)*20 + (int(len(link_attribute_name)/20) + 1)*20 link_legend_html = """<div style="position: fixed; bottom: 50px; left: 250px; width: 150px; height: """+str(height)+"""px; background-color:white;z-index:9999; font-size:14px; "><br> <b><P ALIGN=CENTER>""" + "Link Legend: " + link_attribute_name + """</b> </P>""" for color, val in zip(link_cmap, link_bins[0:-1]): val = '{:.{prec}f}'.format(val, prec=round_ndigits) link_legend_html += """ &emsp;<i class="fa fa-minus fa-1x" style="color:"""+ color +""" "></i> >= """+ val +""" <br>""" link_legend_html += """</div>""" m.get_root().html.add_child(folium.Element(link_legend_html)) #plugins.Search(points, search_zoom=20, ).add_to(m) #if add_longlat_popup: # m.add_child(folium.LatLngPopup()) folium.LayerControl().add_to(m) m.save(filename)
[docs] def network_animation(wn, node_attribute=None, link_attribute=None, title=None, node_size=20, node_range=[None,None], node_alpha=1, node_cmap=None, node_labels=False, link_width=1, link_range=[None,None], link_alpha=1, link_cmap=None, link_labels=False, add_colorbar=True, directed=False, ax=None, repeat=True): """ Create a network animation Parameters ---------- wn : wntr WaterNetworkModel A WaterNetworkModel object node_attribute : pd.DataFrame, optional Node attributes stored in a pandas DataFrames, where the index is time and columns are the node name link_attribute : pd.DataFrame, optional Link attributes stored in a pandas DataFrames, where the index is time and columns are the link name title : str, optional Plot title node_size : int, optional Node size node_range : list, optional Node range ([None,None] indicates autoscale) node_alpha : int, optional Node transparency node_cmap : matplotlib.pyplot.cm colormap or list of named colors, optional Node colormap node_labels: bool, optional If True, the graph will include each node labelled with its name. link_width : int, optional Link width link_range : list, optional Link range ([None,None] indicates autoscale) link_alpha : int, optional Link transparency link_cmap : matplotlib.pyplot.cm colormap or list of named colors, optional Link colormap link_labels: bool, optional If True, the graph will include each link labelled with its name. add_colorbar : bool, optional Add colorbar directed : bool, optional If True, plot the directed graph repeat : bool, optional If True, the animation will repeat Returns ------- matplotlib animation """ if node_attribute is not None: node_index = node_attribute.index initial_node_values = node_attribute.iloc[0, :] if node_range[0] is None: node_range[0] = node_attribute.min().min() if node_range[1] is None: node_range[1] = node_attribute.max().max() else: node_index = None initial_node_values = None if link_attribute is not None: link_index = link_attribute.index initial_link_values = link_attribute.iloc[0, :] if link_range[0] is None: link_range[0] = link_attribute.min().min() if link_range[1] is None: link_range[1] = link_attribute.max().max() else: link_index = None initial_link_values = None if (node_index is not None) & (link_index is not None): if len(node_index.symmetric_difference(link_index)) > 0: print('Node attribute index does not equal link attribute index') return index = node_index elif node_index is not None: index = node_index elif link_index is not None: index = link_index else: print('Node attributes or link attributes must be included') return if ax is None: # create a new figure fig = plt.figure(facecolor='w', edgecolor='k') ax = plt.gca() if title is not None: title_name = title + ', ', str(index[0]) else: title_name = '0' ax = plot_network(wn, node_attribute=initial_node_values, link_attribute=initial_link_values, title=title_name, node_size=node_size, node_range=node_range, node_alpha=node_alpha, node_cmap=node_cmap, node_labels=node_labels, link_width=link_width, link_range=link_range, link_alpha=link_alpha, link_cmap=link_cmap, link_labels=link_labels, add_colorbar=add_colorbar, directed=directed, ax=ax, show_plot=False) def update(n): if node_attribute is not None: node_values = node_attribute.iloc[n, :] else: node_values = None if link_attribute is not None: link_values = link_attribute.iloc[n, :] else: link_values = None if title is not None: title_name = title + ', ' + str(index[n]) else: title_name = str(n) fig.clf() ax = plt.gca() ax = plot_network(wn, node_attribute=node_values, link_attribute=link_values, title=title_name, node_size=node_size, node_range=node_range, node_alpha=node_alpha, node_cmap=node_cmap, node_labels=node_labels, link_width=link_width, link_range=link_range, link_alpha=link_alpha, link_cmap=link_cmap, link_labels=link_labels, add_colorbar=add_colorbar, directed=directed, ax=ax, show_plot=False) return ax anim = animation.FuncAnimation(fig, update, interval=50, frames=len(index), blit=False, repeat=repeat) return anim