Source code for wntr.library.demand_library

import matplotlib.pylab as plt
import pandas as pd
import numpy as np
import scipy.stats
import json
from os.path import abspath, dirname, join

from wntr.network.elements import Pattern
from wntr.network.options import TimeOptions

libdir = dirname(abspath(str(__file__)))
NoneType = type(None)

[docs] class DemandPatternLibrary(object): """ Demand pattern library class. Parameters ------------------- filename_or_data: str (optional) Filename or JSON data containing a demand pattern library. If None, the default DemandPatternLibrary.json file is loaded. """
[docs] def __init__(self, filename_or_data=None): self.library = {} if isinstance(filename_or_data, NoneType): filename = join(libdir, 'DemandPatternLibrary.json') with open(filename, "r") as fin: data = json.load(fin) elif isinstance(filename_or_data, str): filename = filename_or_data with open(filename, "r") as fin: data = json.load(fin) elif isinstance(filename_or_data, list): data = filename_or_data for entry in data: name = entry['name'] self.add_pattern(name, entry)
@property def pattern_name_list(self): """ Return a list of demand pattern entry names Returns ------- list of strings """ return list(self.library.keys())
[docs] def get_pattern(self, name): """ Return a pattern entry from the demand pattern library Parameters ---------- name : str Pattern name Returns ------- dictionary """ assert isinstance(name, str) return self.library[name]
[docs] def remove_pattern(self, name): """ Remove a pattern from the demand pattern library Parameters ---------- name : str Pattern name """ assert isinstance(name, str) assert name in set(self.pattern_name_list) del self.library[name]
[docs] def copy_pattern(self, name, new_name): """ Add a copy of an existing pattern to the library Parameters ---------- name : str Existing pattern name new_name : str New pattern name """ assert isinstance(name, str) assert isinstance(new_name, str) assert name != new_name entry = self.get_pattern(name).copy() entry['name'] = new_name self.add_pattern(new_name, entry)
[docs] def filter_by_category(self, category): """ Return a subset of the library, filtered by category Parameters ---------- category : str Category name Returns ------- list of dictionaries """ assert isinstance(category, (str, NoneType)) subset = [] for name in self.pattern_name_list: entry = self.get_pattern(name) if entry['category'] == category: subset.append(entry) return subset
[docs] def normalize_pattern(self, name, inplace=True): """ Normalize values in a pattern so the mean equals 1 Parameters ---------- name : str Pattern name inplace : bool Indicates if the pattern should be modified in place Returns ------- pandas Series """ assert isinstance(name, str) assert isinstance(inplace, bool) series = self.to_Series(name, duration=None) if series.min() < 0: series = series - series.min() series = series/series.mean() if inplace: self.library[name]['multipliers'] = list(series) return series
[docs] def apply_noise(self, name, std, normalize=False, seed=None, inplace=True): """ Apply gaussian random noise to a pattern Parameters ---------- name : str Pattern name std : int or float Standard deviation normalize : bool Indicates if the pattern should be normalized seed : int Seed for the gaussian distribution inplace : bool Indicates if the pattern should be modified in place Returns ------- pandas Series """ assert isinstance(name, str) assert isinstance(std, (int, float)) assert isinstance(normalize, bool) assert isinstance(seed, (int, NoneType)) assert isinstance(inplace, bool) np.random.seed(seed) series = self.to_Series(name, duration=None) noise = np.random.normal(0, std, len(series)) series = series + noise if normalize: series = series/series.mean() if inplace: self.library[name]['multipliers'] = list(series) return series
[docs] def resample_multipliers(self, name, duration=86400, pattern_timestep=3600, start_clocktime=0, wrap=True, inplace=True): """ Resample multipliers, which can change if the start_clocktime, pattern_timestep, or wrap status changes Parameters ---------- name : str Pattern name duration : int or float Duration (in seconds) of the resampled pattern pattern_timestep : int Timestep (in seconds) of the resampled pattern start_clocktime : int Time of day (in seconds from midnight) at which pattern begins wrap : bool Indicates if the sequence of pattern values repeats inplace : bool Indicates if the pattern should be modified in place Returns ------- pandas Series """ assert isinstance(name, str) assert isinstance(duration, (int, float)) assert isinstance(pattern_timestep, int) assert isinstance(start_clocktime, int) assert isinstance(wrap, bool) assert isinstance(inplace, bool) # Pattern defined using the current time parameters entry = self.get_pattern(name) entry_start_clocktime = entry['start_clocktime'] pattern = self.to_Pattern(name) # index uses new time parameters index = np.arange(start_clocktime, duration, pattern_timestep) multipliers = [] for i in index: multipliers.append(pattern.at(i-entry_start_clocktime)) if inplace: self.library[name]['start_clocktime'] = start_clocktime self.library[name]['pattern_timestep'] = pattern_timestep self.library[name]['wrap'] = wrap self.library[name]['multipliers'] = list(multipliers) series = pd.Series(index=index, data=multipliers) return series
[docs] def add_pattern(self, name, entry): """ Add a pattern to the library Parameters ---------- name : str Pattern name entry : dict Pattern entry which contains the following dictionary keys * name: Pattern name (string) * category: Pattern category (string, optional) * description: Pattern description (string, optional) * citation: Pattern citation (string, optional) * start_clocktime: Time of day (in seconds from midnight) at which pattern begins (integer) * pattern_timestep: Pattern timestep in seconds (integer) * wrap: Indicates if the sequence of pattern values repeats (True or False) * multipliers: Pattern values (list of floats) Returns ------- pandas Series """ assert isinstance(name, str) assert isinstance(entry, dict) assert name not in set(self.pattern_name_list) required_keys = ['name', 'start_clocktime', 'pattern_timestep', 'wrap', 'multipliers'] assert set(required_keys) <= set(entry.keys()) self.library[name] = entry series = self.to_Series(name) return series
[docs] def add_pulse_pattern(self, name, on_off_sequence, duration=86400, pattern_timestep=3600, start_clocktime=0, wrap=True, invert=False, normalize=False): """ Add a pulse pattern to the library using a sequence of on/off times Pulse patterns can be used to model sudden changes in water demand, for example, from a fire hydrant. This pattern replicates functionality in Pattern.binary_pattern Parameters ---------- name : str Pattern name on_off_sequence : list A list of times to turn the pattern on/off (starting with on) duration : int or float Duration (in seconds) of the resampled pattern pattern_timestep : int Timestep (in seconds) of the resampled pattern start_clocktime : int Time of day (in seconds from midnight) at which pattern begins wrap : bool Indicates if the sequence of pattern values repeats invert : bool Indicates if the on/off values should be switched normalize : bool Indicates if the pattern should be normalized Returns ------- pandas Series """ assert isinstance(name, str) assert isinstance(on_off_sequence, list) assert np.all(np.diff(on_off_sequence) > 0) # is monotonically increasing assert isinstance(duration, (int, float)) assert isinstance(pattern_timestep, int) assert isinstance(start_clocktime, int) assert isinstance(wrap, bool) assert isinstance(invert, bool) assert isinstance(normalize, bool) index = np.arange(start_clocktime, duration, pattern_timestep) multipliers = pd.Series(index=index, data=0) # starts off switches = 0 for time in on_off_sequence: switches = switches + 1 position = np.mod(switches,2) # returns 0 or 1 multipliers.loc[time::] = position if invert: multipliers = multipliers.max() - multipliers if normalize: multipliers = multipliers/multipliers.mean() entry = {'name': name, 'category': None, 'description': None, 'citation': None, 'start_clocktime': start_clocktime, 'pattern_timestep': pattern_timestep, 'wrap': wrap, 'multipliers': list(multipliers)} self.add_pattern(name, entry) series = self.to_Series(name) return series
[docs] def add_gaussian_pattern(self, name, mean, std, duration=86400, pattern_timestep=3600, start_clocktime=0, wrap=True, invert=False, normalize=False): """ Add a Guassian pattern to the library defined by a mean and standard deviation Gaussian patterns can be used to model water demand that gradually increases to a max water use, followed by gradual decline. Parameters ---------- name : str Pattern name mean : int or float Mean of the Guassian distribution std : int or float Standard deviation of the Guassian distribution duration : int or float Duration (in seconds) of the pattern pattern_timestep : int Timestep (in seconds) of the pattern start_clocktime : int Time of day (in seconds from midnight) at which pattern begins wrap : bool Indicates if the sequence of pattern values repeats invert : bool Indicates if the on/off values should be switched normalize : bool Indicates if the pattern should be normalized Returns ------- pandas Series """ assert isinstance(name, str) assert isinstance(mean, (int, float)) assert isinstance(std, (int, float)) assert isinstance(duration, (int, float)) assert isinstance(pattern_timestep, int) assert isinstance(start_clocktime, int) assert isinstance(wrap, bool) assert isinstance(invert, bool) assert isinstance(normalize, bool) index = np.arange(start_clocktime, duration, pattern_timestep) multipliers = scipy.stats.norm.pdf(index, mean, std) if invert: multipliers = multipliers.max() - multipliers if normalize: multipliers = multipliers/multipliers.mean() entry = {'name': name, 'category': None, 'description': None, 'citation': None, 'start_clocktime': start_clocktime, 'pattern_timestep': pattern_timestep, 'wrap': wrap, 'multipliers': list(multipliers)} self.add_pattern(name, entry) series = self.to_Series(name) return series
[docs] def add_triangular_pattern(self, name, start, peak, end, duration=86400, pattern_timestep=3600, start_clocktime=0, wrap=True, invert=False, normalize=False): """ Add a triangular pattern to the library defined by a start time, peak time, and end time Triangular patterns can be used to model water demand that uniformly increases to a max water use, followed by uniform decline. Parameters ---------- name : str Pattern name start : int or float Start time (in seconds) of the triangular distribution peak : int or float Peak time (in seconds) of the triangular distribution end : int or float End time (in seconds) of the triangular distribution duration : int or float Duration (in seconds) of the pattern pattern_timestep : int Timestep (in seconds) of the pattern start_clocktime : int Time of day (in seconds from midnight) at which pattern begins wrap : bool Indicates if the sequence of pattern values repeats invert : bool Indicates if the on/off values should be switched normalize : bool Indicates if the pattern should be normalized Returns ------- pandas Series """ assert isinstance(name, str) assert isinstance(start, (int, float)) assert isinstance(peak, (int, float)) assert isinstance(end, (int, float)) assert isinstance(duration, (int, float)) assert isinstance(pattern_timestep, int) assert isinstance(start_clocktime, int) assert isinstance(wrap, bool) assert isinstance(invert, bool) assert isinstance(normalize, bool) loc = start scale = end-start c = (peak-start)/(end-start) index = np.arange(start_clocktime, duration, pattern_timestep) multipliers = scipy.stats.triang.pdf(index, c, loc, scale) if invert: multipliers = multipliers.max() - multipliers if normalize: multipliers = multipliers/multipliers.mean() entry = {'name': name, 'category': None, 'description': None, 'citation': None, 'start_clocktime': start_clocktime, 'pattern_timestep': pattern_timestep, 'wrap': wrap, 'multipliers': list(multipliers)} self.add_pattern(name, entry) series = self.to_Series(name) return series
[docs] def add_combined_pattern(self, name, patterns_to_combine, combine='Overlap', weights=None, durations=[86400], pattern_timestep=3600, start_clocktime=0, wrap=True, normalize=False): """ Combine patterns (overlap or sequential) to create a new pattern Parameters ---------- name : str Pattern name patterns_to_combine : list of str List of pattern names to combine combine : str Combine method, Overlap or Sequential weights: list List of weight applied to each pattern. If no weights are provided (None), then the patterns are equally weighted. durations : list of ints or floats If combine method is Overlap, the list contains only one entry which is the total duration of the pattern (in seconds). If combine method is Sequential, the list contains one duration for each pattern to combine (in seconds). pattern_timestep : int Timestep (in seconds) of the pattern start_clocktime : int Time of day (in seconds from midnight) at which pattern begins wrap : bool Indicates if the sequence of pattern values repeats normalize : bool Indicates if the pattern should be normalized Returns ------- pandas Series """ assert isinstance(name, str) assert isinstance(patterns_to_combine, list) if weights is None: weights = [1]*len(patterns_to_combine) assert isinstance(weights, list) assert len(patterns_to_combine) == len(weights) assert isinstance(combine, str) assert combine in ['Overlap', 'Sequential'] assert isinstance(durations, list) if combine == 'Overlap': assert len(durations) == 1 else: assert len(durations) == len(patterns_to_combine) assert isinstance(pattern_timestep, int) assert isinstance(start_clocktime, int) assert isinstance(wrap, bool) assert isinstance(normalize, bool) t = start_clocktime series = {} for i, n in enumerate(patterns_to_combine): if combine == 'Sequential': duration = durations[i] else: duration = durations[0] weight = weights[i] entry = self.get_pattern(n) #entry_start_clocktime = entry['start_clocktime'] pattern = self.to_Pattern(n) index = np.arange(t, t+duration, pattern_timestep) values = [] for i in index: values.append(pattern.at(i-start_clocktime)) series[n+str(i)] = pd.Series(index=index, data=values*weight) if combine == 'Sequential': t = t + duration df = pd.DataFrame(index=index, data=series) if combine == 'Sequential': series = pd.concat(series) series.droplevel(0) else: series = df.sum(axis=1) if normalize: series = series/series.mean() entry = {'name': name, 'category': None, 'description': None, 'citation': None, 'start_clocktime': start_clocktime, 'pattern_timestep': pattern_timestep, 'wrap': wrap, 'multipliers': list(series)} self.add_pattern(name, entry) return series
[docs] def to_Pattern(self, name, time_options=None): """ Convert the pattern library entry to a WNTR Pattern Parameters ---------- name : str Pattern name time_options : None or tuple Time options (pattern_start, pattern_timestep, pattern_interpolation) If None, then time options from the pattern are used (in seconds). Returns ------- WNTR Pattern object """ assert isinstance(name, str) assert isinstance(time_options, (TimeOptions, tuple, NoneType)) entry = self.get_pattern(name) pattern_timestep = entry['pattern_timestep'] start_clocktime = entry['start_clocktime'] if time_options is None: pattern_start = 0 pattern_interpolation=True time_options = (pattern_start, pattern_timestep, pattern_interpolation) elif isinstance(time_options, TimeOptions): assert time_options.pattern_timestep == pattern_timestep assert time_options.start_clocktime == start_clocktime elif isinstance(time_options, tuple): assert time_options[1] == pattern_timestep # Note pattern_start is only used by the EpanetSimulator or WNTRSimulator multipliers = entry['multipliers'] wrap = entry['wrap'] pattern = Pattern(name=name, multipliers=multipliers, time_options=time_options, wrap=wrap) return pattern
[docs] def to_Series(self, name, duration=None): """ Convert the pattern library entry to a Pandas Series Parameters ---------- name : str Pattern name duration : int, float, or None Pattern duration (in seconds). If None, then the duration from the pattern entry is used. Returns ------- pandas Series """ assert isinstance(name, str) assert isinstance(duration, (int, float, NoneType)) entry = self.get_pattern(name) start_clocktime = entry['start_clocktime'] pattern_timestep = entry['pattern_timestep'] if duration is None: multipliers = entry['multipliers'] duration = start_clocktime + len(multipliers)*pattern_timestep pattern = self.to_Pattern(name) # Get values at a particular time, can be used to resample index = np.arange(start_clocktime, duration, pattern_timestep) data = [] for i in index: data.append(pattern.at(i-start_clocktime)) series = pd.Series(index=index, data=data) return series
[docs] def write_json(self, filename): """ Write the library to a JSON file Parameters ---------- filename : str Filename for the library JSON file """ assert isinstance(filename, str) data = [] for name, entry in self.library.items(): data.append(entry) if isinstance(filename, str): with open(filename, "w") as fout: json.dump(data, fout)
[docs] def plot_patterns(self, names=None, duration=None, ax=None): """ Plot patterns Parameters ---------- names : list of str Pattern names, if None then all patterns are plotted duration : int or float Pattern duration (in seconds). If None, then the duration from the pattern entry is used. Returns ------- matplotlib axes object """ assert isinstance(names, (list, NoneType)) assert isinstance(duration, (int, float, NoneType)) if names is None: names = self.pattern_name_list if ax is None: fig, ax = plt.subplots() for name in names: series = self.to_Series(name, duration=duration) series.index = series.index/3600 series.plot(ax=ax, linewidth=1.5, label=name) ax.set_ylabel('Demand Multiplier') ax.set_xlabel('Time (hr)') ax.legend() return ax