import matplotlib.pylab as plt
import pandas as pd
import numpy as np
import scipy.stats
import json
from os.path import abspath, dirname, join
from wntr.network.elements import Pattern
from wntr.network.options import TimeOptions
libdir = dirname(abspath(str(__file__)))
NoneType = type(None)
[docs]
class DemandPatternLibrary(object):
"""
Demand pattern library class.
Parameters
-------------------
filename_or_data: str (optional)
Filename or JSON data containing a demand pattern library.
If None, the default DemandPatternLibrary.json file is loaded.
"""
[docs]
def __init__(self, filename_or_data=None):
self.library = {}
if isinstance(filename_or_data, NoneType):
filename = join(libdir, 'DemandPatternLibrary.json')
with open(filename, "r") as fin:
data = json.load(fin)
elif isinstance(filename_or_data, str):
filename = filename_or_data
with open(filename, "r") as fin:
data = json.load(fin)
elif isinstance(filename_or_data, list):
data = filename_or_data
for entry in data:
name = entry['name']
self.add_pattern(name, entry)
@property
def pattern_name_list(self):
"""
Return a list of demand pattern entry names
Returns
-------
list of strings
"""
return list(self.library.keys())
[docs]
def get_pattern(self, name):
"""
Return a pattern entry from the demand pattern library
Parameters
----------
name : str
Pattern name
Returns
-------
dictionary
"""
assert isinstance(name, str)
return self.library[name]
[docs]
def remove_pattern(self, name):
"""
Remove a pattern from the demand pattern library
Parameters
----------
name : str
Pattern name
"""
assert isinstance(name, str)
assert name in set(self.pattern_name_list)
del self.library[name]
[docs]
def copy_pattern(self, name, new_name):
"""
Add a copy of an existing pattern to the library
Parameters
----------
name : str
Existing pattern name
new_name : str
New pattern name
"""
assert isinstance(name, str)
assert isinstance(new_name, str)
assert name != new_name
entry = self.get_pattern(name).copy()
entry['name'] = new_name
self.add_pattern(new_name, entry)
[docs]
def filter_by_category(self, category):
"""
Return a subset of the library, filtered by category
Parameters
----------
category : str
Category name
Returns
-------
list of dictionaries
"""
assert isinstance(category, (str, NoneType))
subset = []
for name in self.pattern_name_list:
entry = self.get_pattern(name)
if entry['category'] == category:
subset.append(entry)
return subset
[docs]
def normalize_pattern(self, name, inplace=True):
"""
Normalize values in a pattern so the mean equals 1
Parameters
----------
name : str
Pattern name
inplace : bool
Indicates if the pattern should be modified in place
Returns
-------
pandas Series
"""
assert isinstance(name, str)
assert isinstance(inplace, bool)
series = self.to_Series(name, duration=None)
if series.min() < 0:
series = series - series.min()
series = series/series.mean()
if inplace:
self.library[name]['multipliers'] = list(series)
return series
[docs]
def apply_noise(self, name, std, normalize=False, seed=None, inplace=True):
"""
Apply gaussian random noise to a pattern
Parameters
----------
name : str
Pattern name
std : int or float
Standard deviation
normalize : bool
Indicates if the pattern should be normalized
seed : int
Seed for the gaussian distribution
inplace : bool
Indicates if the pattern should be modified in place
Returns
-------
pandas Series
"""
assert isinstance(name, str)
assert isinstance(std, (int, float))
assert isinstance(normalize, bool)
assert isinstance(seed, (int, NoneType))
assert isinstance(inplace, bool)
np.random.seed(seed)
series = self.to_Series(name, duration=None)
noise = np.random.normal(0, std, len(series))
series = series + noise
if normalize:
series = series/series.mean()
if inplace:
self.library[name]['multipliers'] = list(series)
return series
[docs]
def resample_multipliers(self, name, duration=86400,
pattern_timestep=3600, start_clocktime=0,
wrap=True, inplace=True):
"""
Resample multipliers, which can change if the start_clocktime,
pattern_timestep, or wrap status changes
Parameters
----------
name : str
Pattern name
duration : int or float
Duration (in seconds) of the resampled pattern
pattern_timestep : int
Timestep (in seconds) of the resampled pattern
start_clocktime : int
Time of day (in seconds from midnight) at which pattern begins
wrap : bool
Indicates if the sequence of pattern values repeats
inplace : bool
Indicates if the pattern should be modified in place
Returns
-------
pandas Series
"""
assert isinstance(name, str)
assert isinstance(duration, (int, float))
assert isinstance(pattern_timestep, int)
assert isinstance(start_clocktime, int)
assert isinstance(wrap, bool)
assert isinstance(inplace, bool)
# Pattern defined using the current time parameters
entry = self.get_pattern(name)
entry_start_clocktime = entry['start_clocktime']
pattern = self.to_Pattern(name)
# index uses new time parameters
index = np.arange(start_clocktime, duration, pattern_timestep)
multipliers = []
for i in index:
multipliers.append(pattern.at(i-entry_start_clocktime))
if inplace:
self.library[name]['start_clocktime'] = start_clocktime
self.library[name]['pattern_timestep'] = pattern_timestep
self.library[name]['wrap'] = wrap
self.library[name]['multipliers'] = list(multipliers)
series = pd.Series(index=index, data=multipliers)
return series
[docs]
def add_pattern(self, name, entry):
"""
Add a pattern to the library
Parameters
----------
name : str
Pattern name
entry : dict
Pattern entry which contains the following dictionary keys
* name: Pattern name (string)
* category: Pattern category (string, optional)
* description: Pattern description (string, optional)
* citation: Pattern citation (string, optional)
* start_clocktime: Time of day (in seconds from midnight) at which pattern begins (integer)
* pattern_timestep: Pattern timestep in seconds (integer)
* wrap: Indicates if the sequence of pattern values repeats (True or False)
* multipliers: Pattern values (list of floats)
Returns
-------
pandas Series
"""
assert isinstance(name, str)
assert isinstance(entry, dict)
assert name not in set(self.pattern_name_list)
required_keys = ['name',
'start_clocktime',
'pattern_timestep',
'wrap',
'multipliers']
assert set(required_keys) <= set(entry.keys())
self.library[name] = entry
series = self.to_Series(name)
return series
[docs]
def add_pulse_pattern(self, name, on_off_sequence, duration=86400,
pattern_timestep=3600, start_clocktime=0,
wrap=True, invert=False, normalize=False):
"""
Add a pulse pattern to the library using a sequence of on/off times
Pulse patterns can be used to model sudden changes in water demand,
for example, from a fire hydrant.
This pattern replicates functionality in Pattern.binary_pattern
Parameters
----------
name : str
Pattern name
on_off_sequence : list
A list of times to turn the pattern on/off (starting with on)
duration : int or float
Duration (in seconds) of the resampled pattern
pattern_timestep : int
Timestep (in seconds) of the resampled pattern
start_clocktime : int
Time of day (in seconds from midnight) at which pattern begins
wrap : bool
Indicates if the sequence of pattern values repeats
invert : bool
Indicates if the on/off values should be switched
normalize : bool
Indicates if the pattern should be normalized
Returns
-------
pandas Series
"""
assert isinstance(name, str)
assert isinstance(on_off_sequence, list)
assert np.all(np.diff(on_off_sequence) > 0) # is monotonically increasing
assert isinstance(duration, (int, float))
assert isinstance(pattern_timestep, int)
assert isinstance(start_clocktime, int)
assert isinstance(wrap, bool)
assert isinstance(invert, bool)
assert isinstance(normalize, bool)
index = np.arange(start_clocktime, duration, pattern_timestep)
multipliers = pd.Series(index=index, data=0) # starts off
switches = 0
for time in on_off_sequence:
switches = switches + 1
position = np.mod(switches,2) # returns 0 or 1
multipliers.loc[time::] = position
if invert:
multipliers = multipliers.max() - multipliers
if normalize:
multipliers = multipliers/multipliers.mean()
entry = {'name': name,
'category': None,
'description': None,
'citation': None,
'start_clocktime': start_clocktime,
'pattern_timestep': pattern_timestep,
'wrap': wrap,
'multipliers': list(multipliers)}
self.add_pattern(name, entry)
series = self.to_Series(name)
return series
[docs]
def add_gaussian_pattern(self, name, mean, std, duration=86400,
pattern_timestep=3600, start_clocktime=0,
wrap=True, invert=False, normalize=False):
"""
Add a Guassian pattern to the library defined by a mean and standard
deviation
Gaussian patterns can be used to model water demand that gradually
increases to a max water use, followed by gradual decline.
Parameters
----------
name : str
Pattern name
mean : int or float
Mean of the Guassian distribution
std : int or float
Standard deviation of the Guassian distribution
duration : int or float
Duration (in seconds) of the pattern
pattern_timestep : int
Timestep (in seconds) of the pattern
start_clocktime : int
Time of day (in seconds from midnight) at which pattern begins
wrap : bool
Indicates if the sequence of pattern values repeats
invert : bool
Indicates if the on/off values should be switched
normalize : bool
Indicates if the pattern should be normalized
Returns
-------
pandas Series
"""
assert isinstance(name, str)
assert isinstance(mean, (int, float))
assert isinstance(std, (int, float))
assert isinstance(duration, (int, float))
assert isinstance(pattern_timestep, int)
assert isinstance(start_clocktime, int)
assert isinstance(wrap, bool)
assert isinstance(invert, bool)
assert isinstance(normalize, bool)
index = np.arange(start_clocktime, duration, pattern_timestep)
multipliers = scipy.stats.norm.pdf(index, mean, std)
if invert:
multipliers = multipliers.max() - multipliers
if normalize:
multipliers = multipliers/multipliers.mean()
entry = {'name': name,
'category': None,
'description': None,
'citation': None,
'start_clocktime': start_clocktime,
'pattern_timestep': pattern_timestep,
'wrap': wrap,
'multipliers': list(multipliers)}
self.add_pattern(name, entry)
series = self.to_Series(name)
return series
[docs]
def add_triangular_pattern(self, name, start, peak, end, duration=86400,
pattern_timestep=3600, start_clocktime=0,
wrap=True, invert=False, normalize=False):
"""
Add a triangular pattern to the library defined by a start time,
peak time, and end time
Triangular patterns can be used to model water demand that uniformly
increases to a max water use, followed by uniform decline.
Parameters
----------
name : str
Pattern name
start : int or float
Start time (in seconds) of the triangular distribution
peak : int or float
Peak time (in seconds) of the triangular distribution
end : int or float
End time (in seconds) of the triangular distribution
duration : int or float
Duration (in seconds) of the pattern
pattern_timestep : int
Timestep (in seconds) of the pattern
start_clocktime : int
Time of day (in seconds from midnight) at which pattern begins
wrap : bool
Indicates if the sequence of pattern values repeats
invert : bool
Indicates if the on/off values should be switched
normalize : bool
Indicates if the pattern should be normalized
Returns
-------
pandas Series
"""
assert isinstance(name, str)
assert isinstance(start, (int, float))
assert isinstance(peak, (int, float))
assert isinstance(end, (int, float))
assert isinstance(duration, (int, float))
assert isinstance(pattern_timestep, int)
assert isinstance(start_clocktime, int)
assert isinstance(wrap, bool)
assert isinstance(invert, bool)
assert isinstance(normalize, bool)
loc = start
scale = end-start
c = (peak-start)/(end-start)
index = np.arange(start_clocktime, duration, pattern_timestep)
multipliers = scipy.stats.triang.pdf(index, c, loc, scale)
if invert:
multipliers = multipliers.max() - multipliers
if normalize:
multipliers = multipliers/multipliers.mean()
entry = {'name': name,
'category': None,
'description': None,
'citation': None,
'start_clocktime': start_clocktime,
'pattern_timestep': pattern_timestep,
'wrap': wrap,
'multipliers': list(multipliers)}
self.add_pattern(name, entry)
series = self.to_Series(name)
return series
[docs]
def add_combined_pattern(self, name, patterns_to_combine, combine='Overlap', weights=None,
durations=[86400], pattern_timestep=3600, start_clocktime=0,
wrap=True, normalize=False):
"""
Combine patterns (overlap or sequential) to create a new pattern
Parameters
----------
name : str
Pattern name
patterns_to_combine : list of str
List of pattern names to combine
combine : str
Combine method, Overlap or Sequential
weights: list
List of weight applied to each pattern.
If no weights are provided (None), then the patterns are equally
weighted.
durations : list of ints or floats
If combine method is Overlap, the list contains only one entry
which is the total duration of the pattern (in seconds).
If combine method is Sequential, the list contains one duration
for each pattern to combine (in seconds).
pattern_timestep : int
Timestep (in seconds) of the pattern
start_clocktime : int
Time of day (in seconds from midnight) at which pattern begins
wrap : bool
Indicates if the sequence of pattern values repeats
normalize : bool
Indicates if the pattern should be normalized
Returns
-------
pandas Series
"""
assert isinstance(name, str)
assert isinstance(patterns_to_combine, list)
if weights is None:
weights = [1]*len(patterns_to_combine)
assert isinstance(weights, list)
assert len(patterns_to_combine) == len(weights)
assert isinstance(combine, str)
assert combine in ['Overlap', 'Sequential']
assert isinstance(durations, list)
if combine == 'Overlap':
assert len(durations) == 1
else:
assert len(durations) == len(patterns_to_combine)
assert isinstance(pattern_timestep, int)
assert isinstance(start_clocktime, int)
assert isinstance(wrap, bool)
assert isinstance(normalize, bool)
t = start_clocktime
series = {}
for i, n in enumerate(patterns_to_combine):
if combine == 'Sequential':
duration = durations[i]
else:
duration = durations[0]
weight = weights[i]
entry = self.get_pattern(n)
#entry_start_clocktime = entry['start_clocktime']
pattern = self.to_Pattern(n)
index = np.arange(t, t+duration, pattern_timestep)
values = []
for i in index:
values.append(pattern.at(i-start_clocktime))
series[n+str(i)] = pd.Series(index=index, data=values*weight)
if combine == 'Sequential':
t = t + duration
df = pd.DataFrame(index=index, data=series)
if combine == 'Sequential':
series = pd.concat(series)
series.droplevel(0)
else:
series = df.sum(axis=1)
if normalize:
series = series/series.mean()
entry = {'name': name,
'category': None,
'description': None,
'citation': None,
'start_clocktime': start_clocktime,
'pattern_timestep': pattern_timestep,
'wrap': wrap,
'multipliers': list(series)}
self.add_pattern(name, entry)
return series
[docs]
def to_Pattern(self, name, time_options=None):
"""
Convert the pattern library entry to a WNTR Pattern
Parameters
----------
name : str
Pattern name
time_options : None or tuple
Time options (pattern_start, pattern_timestep, pattern_interpolation)
If None, then time options from the pattern are used (in seconds).
Returns
-------
WNTR Pattern object
"""
assert isinstance(name, str)
assert isinstance(time_options, (TimeOptions, tuple, NoneType))
entry = self.get_pattern(name)
pattern_timestep = entry['pattern_timestep']
start_clocktime = entry['start_clocktime']
if time_options is None:
pattern_start = 0
pattern_interpolation=True
time_options = (pattern_start,
pattern_timestep,
pattern_interpolation)
elif isinstance(time_options, TimeOptions):
assert time_options.pattern_timestep == pattern_timestep
assert time_options.start_clocktime == start_clocktime
elif isinstance(time_options, tuple):
assert time_options[1] == pattern_timestep
# Note pattern_start is only used by the EpanetSimulator or WNTRSimulator
multipliers = entry['multipliers']
wrap = entry['wrap']
pattern = Pattern(name=name,
multipliers=multipliers,
time_options=time_options,
wrap=wrap)
return pattern
[docs]
def to_Series(self, name, duration=None):
"""
Convert the pattern library entry to a Pandas Series
Parameters
----------
name : str
Pattern name
duration : int, float, or None
Pattern duration (in seconds). If None, then the duration from
the pattern entry is used.
Returns
-------
pandas Series
"""
assert isinstance(name, str)
assert isinstance(duration, (int, float, NoneType))
entry = self.get_pattern(name)
start_clocktime = entry['start_clocktime']
pattern_timestep = entry['pattern_timestep']
if duration is None:
multipliers = entry['multipliers']
duration = start_clocktime + len(multipliers)*pattern_timestep
pattern = self.to_Pattern(name)
# Get values at a particular time, can be used to resample
index = np.arange(start_clocktime, duration, pattern_timestep)
data = []
for i in index:
data.append(pattern.at(i-start_clocktime))
series = pd.Series(index=index, data=data)
return series
[docs]
def write_json(self, filename):
"""
Write the library to a JSON file
Parameters
----------
filename : str
Filename for the library JSON file
"""
assert isinstance(filename, str)
data = []
for name, entry in self.library.items():
data.append(entry)
if isinstance(filename, str):
with open(filename, "w") as fout:
json.dump(data, fout)
[docs]
def plot_patterns(self, names=None, duration=None, ax=None):
"""
Plot patterns
Parameters
----------
names : list of str
Pattern names, if None then all patterns are plotted
duration : int or float
Pattern duration (in seconds). If None, then the duration from
the pattern entry is used.
Returns
-------
matplotlib axes object
"""
assert isinstance(names, (list, NoneType))
assert isinstance(duration, (int, float, NoneType))
if names is None:
names = self.pattern_name_list
if ax is None:
fig, ax = plt.subplots()
for name in names:
series = self.to_Series(name, duration=duration)
series.index = series.index/3600
series.plot(ax=ax, linewidth=1.5, label=name)
ax.set_ylabel('Demand Multiplier')
ax.set_xlabel('Time (hr)')
ax.legend()
return ax