Source code for wntr.network.io

# coding: utf-8

"""
The wntr.network.io module includes functions that convert the water network
model to other data formats, create a water network model from file, and write 
the water network model to a file.
"""
import logging
import json
import networkx as nx

import wntr.epanet
from wntr.epanet.util import FlowUnits
import wntr.network.model
from wntr.gis.network import WaterNetworkGIS
try:
    import geopandas as gpd
    has_geopandas = True
except ModuleNotFoundError:
    gpd = None
    has_geopandas = False
    
logger = logging.getLogger(__name__)


[docs] def to_dict(wn) -> dict: """ Convert a WaterNetworkModel into a dictionary Parameters ---------- wn : WaterNetworkModel Water network model Returns ------- dict Dictionary representation of the WaterNetworkModel """ from wntr import __version__ controls = list() for k, c in wn._controls.items(): cc = c.to_dict() if "name" in cc.keys() and not cc["name"]: cc["name"] = k controls.append(cc) d = dict( version="wntr-{}".format(__version__), comment="WaterNetworkModel - all values given in SI units", name=wn.name, references=wn._references.copy(), options=wn._options.to_dict(), curves=wn._curve_reg.to_list(), patterns=wn._pattern_reg.to_list(), nodes=wn._node_reg.to_list(), links=wn._link_reg.to_list(), sources=wn._sources.to_list(), controls=controls, ) return d
[docs] def from_dict(d: dict, append=None): """ Create or append a WaterNetworkModel from a dictionary Parameters ---------- d : dict Dictionary representation of the water network model append : WaterNetworkModel or None, optional Existing WaterNetworkModel to append. If None, a new WaterNetworkModel is created. Returns ------- WaterNetworkModel """ from wntr.epanet.io import _read_control_line, _EpanetRule keys = [ "version", "comment", "name", "references", "options", "curves", "patterns", "nodes", "links", "sources", "controls", ] for key in keys: if key not in d.keys(): logger.warning("Dictionary model missing key '{}'".format(key)) if append is None: wn = wntr.network.model.WaterNetworkModel() else: wn = append if "name" in d: wn.name = d["name"] if "references" in d: wn._references = d["references"] if "options" in d: wn.options.__init__(**d["options"]) if "curves" in d: for curve in d["curves"]: wn.add_curve(name=curve["name"], curve_type=curve["curve_type"], xy_tuples_list=curve["points"]) if "patterns" in d: for pattern in d["patterns"]: wn.add_pattern(name=pattern["name"], pattern=pattern["multipliers"]) if "nodes" in d: for node in d["nodes"]: name = node["name"] if node["node_type"] == "Junction": dl = node.setdefault("demand_timeseries_list") if dl is not None and len(dl) > 0: base_demand = dl[0].setdefault("base_val", 0.0) pattern_name = dl[0].setdefault("pattern_name") demand_category = dl[0].setdefault("category") else: base_demand = node.setdefault('base_demand',0.0) pattern_name = node.setdefault('pattern_name') demand_category = node.setdefault('demand_category') wn.add_junction( name=name, base_demand=base_demand, demand_pattern=pattern_name, elevation=node.setdefault("elevation"), coordinates=node.setdefault("coordinates", list()), demand_category=demand_category, ) j = wn.get_node(name) j.emitter_coefficient = node.setdefault("emitter_coefficient") j.initial_quality = node.setdefault("initial_quality") j.minimum_pressure = node.setdefault("minimum_pressure") j.pressure_exponent = node.setdefault("pressure_exponent") j.required_pressure = node.setdefault("required_pressure") j.tag = node.setdefault("tag") j._leak = node.setdefault("leak", False) j._leak_area = node.setdefault("leak_area", 0.0) j._leak_discharge_coeff = node.setdefault("leak_discharge_coeff", 0.0) # custom additional attributes for attr in list(set(node.keys()) - set(dir(j))): setattr( j, attr, node[attr] ) if dl is not None and len(dl) > 1: for i in range(1, len(dl)): base_val = dl[i].setdefault("base_val", 0.0) pattern_name = dl[i].setdefault("pattern_name") category = dl[i].setdefault("category") j.add_demand(base_val, pattern_name, category) elif node["node_type"] == "Tank": coordinates = node.setdefault("coordinates") wn.add_tank( name, elevation=node.setdefault("elevation"), init_level=node.setdefault("init_level", node.setdefault("min_level", 0)), min_level=node.setdefault("min_level", 0), max_level=node.setdefault("max_level", node.setdefault("min_level", 0) + 10), diameter=node.setdefault("diameter", 0), min_vol=node.setdefault("min_vol", 0), vol_curve=node.setdefault("vol_curve_name"), overflow=node.setdefault("overflow", False), coordinates=coordinates, ) t = wn.get_node(name) t.initial_quality = node.setdefault("initial_quality", 0.0) if node.setdefault("mixing_fraction"): t.mixing_fraction = node.setdefault("mixing_fraction") if node.setdefault("mixing_model"): t.mixing_model = node.setdefault("mixing_model") t.bulk_coeff = node.setdefault("bulk_coeff") t.tag = node.setdefault("tag") # custom additional attributes for attr in list(set(node.keys()) - set(dir(t))): setattr( t, attr, node[attr] ) elif node["node_type"] == "Reservoir": wn.add_reservoir( name, base_head=node.setdefault("base_head"), head_pattern=node.setdefault("head_pattern_name"), coordinates=node.setdefault("coordinates"), ) r = wn.get_node(name) r.initial_quality = node.setdefault("initial_quality", 0.0) r.tag = node.setdefault("tag") # custom additional attributes for attr in list(set(node.keys()) - set(dir(r))): setattr( r, attr, node[attr] ) else: raise ValueError("Illegal node type '{}'".format(node["node_type"])) if "links" in d: for link in d["links"]: name = link["name"] if link["link_type"] == "Pipe": wn.add_pipe( name, link["start_node_name"], end_node_name=link["end_node_name"], length=link.setdefault("length", 304.8), diameter=link.setdefault("diameter", 0.3048), roughness=link.setdefault("roughness", 100.0), minor_loss=link.setdefault("minor_loss", 0.0), initial_status=link.setdefault("initial_status", "OPEN"), check_valve=link.setdefault("check_valve", False), ) p = wn.get_link(name) p.bulk_coeff = link.setdefault("bulk_coeff") p.tag = link.setdefault("tag") p.vertices = link.setdefault("vertices", list()) p.wall_coeff = link.setdefault("wall_coeff") # custom additional attributes for attr in list(set(link.keys()) - set(dir(p))): setattr( p, attr, link[attr] ) elif link["link_type"] == "Pump": pump_type = link.setdefault("pump_type", "POWER") wn.add_pump( name, link["start_node_name"], link["end_node_name"], pump_type=pump_type, pump_parameter=link.setdefault("power") if pump_type.lower() == "power" else link.setdefault("pump_curve_name"), speed=link.setdefault("base_speed", 1.0), pattern=link.setdefault("speed_pattern_name"), initial_status=link.setdefault("initial_status", "OPEN"), ) p = wn.get_link(name) p.efficiency = link.setdefault("efficiency") p.energy_pattern = link.setdefault("energy_pattern") p.energy_price = link.setdefault("energy_price") p.initial_setting = link.setdefault("initial_setting") p.tag = link.setdefault("tag") p.vertices = link.setdefault("vertices", list()) # custom additional attributes for attr in list(set(link.keys()) - set(dir(p))): setattr( p, attr, link[attr] ) elif link["link_type"] == "Valve": valve_type = link["valve_type"] wn.add_valve( name, link["start_node_name"], link["end_node_name"], diameter=link.setdefault("diameter", 0.3048), valve_type=valve_type, minor_loss=link.setdefault("minor_loss", 0), initial_setting=link.setdefault("initial_setting", 0), initial_status=link.setdefault("initial_status", "ACTIVE"), ) v = wn.get_link(name) if valve_type.lower() == "gpv": v.headloss_curve_name = link.setdefault("headloss_curve_name") # custom additional attributes for attr in list(set(link.keys()) - set(dir(v))): setattr( v, attr, link[attr] ) else: raise ValueError("Illegal link type '{}'".format(link["link_type"])) if "sources" in d: for source in d["sources"]: wn.add_source( source["name"], node_name=source["node_name"], source_type=source["source_type"], quality=source["strength"], pattern=source["pattern"], ) if "controls" in d: # TODO: FIXME: FINISH control_count = 0 for control in d["controls"]: ctrl_type = control["type"] if ctrl_type.lower() == "simple": control_count += 1 control_name = "control " + str(control_count) ta = control["then_actions"][0].split() tstring = " ".join([ta[0], ta[1], ta[4]]) cond = control["condition"].split() if cond[0].lower() == "system": cstr = " ".join(["AT", cond[1], cond[3], cond[4] if len(cond) > 4 else ""]) else: cstr = " ".join(["IF", cond[0], cond[1], cond[3], cond[4]]) ctrl = _read_control_line(tstring + " " + cstr, wn, FlowUnits.SI, control_name) wn.add_control(control_name, ctrl) elif ctrl_type.lower() == "rule": ctrllst = ["RULE"] control_name = control["name"] ctrllst.append(control["name"]) ctrllst.append("IF") ctrllst.append(control["condition"]) thenact = " AND ".join(control["then_actions"]) ctrllst.append("THEN") ctrllst.append(thenact) if "else_actions" in control and control["else_actions"]: ctrllst.append("ELSE") ctrllst.append(" AND ".join(control["else_actions"])) ctrllst.append("PRIORITY") ctrllst.append(str(control["priority"])) ctrlstring = " ".join(ctrllst) c = _EpanetRule.parse_rules_lines([ctrlstring]) wn.add_control(control_name, c[0].generate_control(wn)) else: raise ValueError("Illegal control type '{}'".format(ctrl_type)) return wn
[docs] def to_gis(wn, crs=None, pumps_as_points=False, valves_as_points=False): """ Convert a WaterNetworkModel into GeoDataFrames Parameters ---------- wn : WaterNetworkModel Water network model crs : str, optional Coordinate reference system, by default None pumps_as_points : bool, optional Represent pumps as points (True) or lines (False), by default False valves_as_points : bool, optional Represent valves as points (True) or lines (False), by default False Returns ------- WaterNetworkGIS object that contains GeoDataFrames """ gis_data = WaterNetworkGIS() gis_data._create_gis(wn, crs, pumps_as_points, valves_as_points) return gis_data
[docs] def from_gis(gis_data, append=None): """ Create or append a WaterNetworkModel from GeoDataFrames Parameters ---------- gis_data : WaterNetworkGIS or dictionary of GeoDataFrames GeoDataFrames containing water network attributes. If gis_data is a dictionary, then the keys are junctions, tanks, reservoirs, pipes, pumps, and valves. If the pumps or valves are Points, they will be converted to Lines with the same start and end node location. append : WaterNetworkModel or None, optional Existing WaterNetworkModel to append. If None, a new WaterNetworkModel is created. Returns ------- WaterNetworkModel """ if isinstance(gis_data, dict): gis_data = WaterNetworkGIS(gis_data) wn = gis_data._create_wn(append=append) return wn
[docs] def to_graph(wn, node_weight=None, link_weight=None, modify_direction=False): """ Convert a WaterNetworkModel into a networkx MultiDiGraph Parameters ---------- node_weight : dict or pandas Series (optional) Node weights link_weight : dict or pandas Series (optional) Link weights. modify_direction : bool (optional) If True, than if the link weight is negative, the link start and end node are switched and the abs(weight) is assigned to the link (this is useful when weighting graphs by flowrate). If False, link direction and weight are not changed. Returns -------- networkx MultiDiGraph """ G = nx.MultiDiGraph() for name, node in wn.nodes(): G.add_node(name) nx.set_node_attributes(G, name="pos", values={name: node.coordinates}) nx.set_node_attributes(G, name="type", values={name: node.node_type}) if node_weight is not None: try: # weight nodes value = node_weight[name] nx.set_node_attributes(G, name="weight", values={name: value}) except: pass for name, link in wn.links(): start_node = link.start_node_name end_node = link.end_node_name G.add_edge(start_node, end_node, key=name) nx.set_edge_attributes(G, name="type", values={(start_node, end_node, name): link.link_type}) if link_weight is not None: try: # weight links value = link_weight[name] if modify_direction and value < 0: # change the direction of the link and value G.remove_edge(start_node, end_node, name) G.add_edge(end_node, start_node, name) nx.set_edge_attributes(G, name="type", values={(end_node, start_node, name): link.link_type}) nx.set_edge_attributes(G, name="weight", values={(end_node, start_node, name): -value}) else: nx.set_edge_attributes(G, name="weight", values={(start_node, end_node, name): value}) except: pass return G
[docs] def write_json(wn, path_or_buf, **kw_json,): """ Write the WaterNetworkModel to a JSON file Parameters ---------- path_or_buf : str or IO stream Name of the file or file pointer kw_json : keyword arguments Arguments to pass directly to `json.dump` """ if isinstance(path_or_buf, str): with open(path_or_buf, "w") as fout: json.dump(to_dict(wn), fout, **kw_json) else: json.dump(to_dict(wn), path_or_buf, **kw_json)
[docs] def read_json(path_or_buf, append=None, **kw_json): """ Create or append a WaterNetworkModel from a JSON file Parameters ---------- f : str Name of the file or file pointer append : WaterNetworkModel or None, optional Existing WaterNetworkModel to append. If None, a new WaterNetworkModel is created. kw_json : keyword arguments Keyword arguments to pass to `json.load` Returns ------- WaterNetworkModel """ if isinstance(path_or_buf, str): with open(path_or_buf, "r") as fin: d = json.load(fin, **kw_json) else: d = json.load(path_or_buf, **kw_json) return from_dict(d, append)
[docs] def write_inpfile(wn, filename: str, units=None, version: float = 2.2, force_coordinates: bool = False): """ Write the WaterNetworkModel to an EPANET INP file .. note:: By default, WNTR now uses EPANET version 2.2 for the EPANET simulator engine. Thus, The WaterNetworkModel will also write an EPANET 2.2 formatted INP file by default as well. Because the PDD analysis options will break EPANET 2.0, the ``version`` option will allow the user to force EPANET 2.0 compatibility at the expense of pressured-dependent analysis options being turned off. Parameters ---------- wn : wntr WaterNetworkModel Water network model filename : string Name of the inp file. units : str, int or FlowUnits Name of the units being written to the inp file. version : float, {2.0, **2.2**} Optionally specify forcing EPANET 2.0 compatibility. force_coordinates : bool This only applies if `self.options.graphics.map_filename` is not `None`, and will force the COORDINATES section to be written even if a MAP file is provided. False by default, but coordinates **are** written by default since the MAP file is `None` by default. """ if wn._inpfile is None: wn._inpfile = wntr.epanet.InpFile() if units is None: units = wn._options.hydraulic.inpfile_units wn._inpfile.write(filename, wn, units=units, version=version, force_coordinates=force_coordinates)
[docs] def read_inpfile(filename, append=None): """ Create or append a WaterNetworkModel from an EPANET INP file Parameters ---------- filename : string Name of the INP file. append : WaterNetworkModel or None, optional Existing WaterNetworkModel to append. If None, a new WaterNetworkModel is created. Returns ------- WaterNetworkModel """ inpfile = wntr.epanet.InpFile() wn = inpfile.read(filename, wn=append) wn._inpfile = inpfile return wn
[docs] def write_geojson(wn, prefix: str, crs=None, pumps_as_points=True, valves_as_points=True): """ Write the WaterNetworkModel to a set of GeoJSON files, one file for each network element. The GeoJSON only includes information from the water network model. To add results of a simulation or analysis, do: .. code:: wn_gis = wn.to_gis() wn_gis.add_node_attributes(some_data_to_add, 'name_of_attribute') wn_gis.write_geojson(...) Parameters ---------- wn : wntr WaterNetworkModel Water network model prefix : str File prefix crs : str, optional Coordinate reference system, by default None pumps_as_points : bool, optional Represent pumps as points (True) or lines (False), by default False valves_as_points : bool, optional Represent valves as points (True) or lines (False), by default False """ wn_gis = wn.to_gis(crs, pumps_as_points=pumps_as_points, valves_as_points=valves_as_points) wn_gis.write_geojson(prefix=prefix)
[docs] def read_geojson(files, index_col='name', append=None): """ Create or append a WaterNetworkModel from GeoJSON files Parameters ---------- files : dictionary Dictionary of GeoJSON filenames, where the keys are in the set ('junction', 'tanks', 'reservoirs', 'pipes', 'pumps', 'valves') and values are the corresponding GeoJSON filename index_col : str, optional Column that contains the element name append : WaterNetworkModel or None, optional Existing WaterNetworkModel to append. If None, a new WaterNetworkModel is created. Returns ------- WaterNetworkModel """ gis_data = WaterNetworkGIS() gis_data.read_geojson(files, index_col=index_col) wn = gis_data._create_wn(append=append) return wn
[docs] def write_shapefile(wn, prefix: str, crs=None, pumps_as_points=True, valves_as_points=True): """ Write the WaterNetworkModel to a set of Esri Shapefiles, one directory for each network element. The Shapefiles only includes information from the water network model. To add results of a simulation or analysis, do: .. code:: wn_gis = wn.to_gis() wn_gis.add_node_attributes(some_data_to_add, 'name_of_attribute') wn_gis.write_shapefile(...) Parameters ---------- wn : wntr WaterNetworkModel Water network model prefix : str File and directory prefix crs : str, optional Coordinate reference system, by default None pumps_as_points : bool, optional Represent pumps as points (True) or lines (False), by default False valves_as_points : bool, optional Represent valves as points (True) or lines (False), by default False """ wn_gis = wn.to_gis(crs, pumps_as_points=pumps_as_points, valves_as_points=valves_as_points) wn_gis.write_shapefile(prefix=prefix)
[docs] def read_shapefile(files, index_col='name', append=None): """ Create or append a WaterNetworkModel from Esri Shapefiles Parameters ---------- files : dictionary Dictionary of Shapefile file or directory names, where the keys are in the set ('junction', 'tanks', 'reservoirs', 'pipes', 'pumps', 'valves') and values are the corresponding Shapefile filenames or directories index_col : str, optional Column that contains the element name append : WaterNetworkModel or None, optional Existing WaterNetworkModel to append. If None, a new WaterNetworkModel is created. Returns ------- WaterNetworkModel """ gis_data = WaterNetworkGIS() gis_data.read_shapefile(files,index_col=index_col) wn = gis_data._create_wn(append=append) return wn
[docs] def valid_gis_names(complete_list=True, truncate_names=None): """ Valid column/field names for GeoJSON or Shapefiles Note that Shapefile field names are truncated to 10 characters (set truncate_names=10) Parameters ---------- complete_list : bool When true, returns both optional and required column/field names. When false, only returns required column/field names. truncate_names : None or int Truncate column/field names to specified number of characters, set truncate=10 for Shapefiles. None indicates no truncation. Returns --------- dict : Dictionary of valid GeoJSON or Shapefile column/field names """ gis_data = WaterNetworkGIS() column_names = gis_data._valid_names(complete_list, truncate_names) return column_names