statestats_querye - convenient way to see mean, pctiles of ENVIRONMENTAL indicators from lookup table
Source:R/statestats_query.R
statestats_querye.Rd
statestats_querye - convenient way to see mean, pctiles of ENVIRONMENTAL indicators from lookup table
Usage
statestats_querye(
ST = sort(unique(EJAM::statestats$REGION)),
varnames = EJAM::names_e,
PCTILES = NULL,
dig = 4
)
Examples
if (FALSE) { # \dontrun{
usastats_querye()
# data.frame where names_e are the names(),
# means plus other percentiles, and there are other cols REGION PCTILE
avg.in.us # This is a data.frame, 1 row, where colnames are indicators
avg.in.us[names_e] # subset is a data.frame!
unlist(avg.in.us[names_e]) # to make it a vector
usastats_means() # This is a matrix, with 1 col, and indicator names are rownames
usastats_means(names_e) # subset is a matrix and indicator names are rownames
usastats_means()[names_e, ] # subset is a named vector and indicator names are names
usastats_means()
statestats_query()
statestats_query()[,names_d]
statestats_query(varnames = names_d)
statestats_query()[,names_e]
statestats_query(varnames = names_e)
statestats_query(varnames = names_d_subgroups)
head(statestats_query(varnames = longlist))
## in USA overall, see mean and key percentiles
# for all demog and envt indicators
usastats_query() # or statestats_query('us')
# can say us or US or USA or usa etc.
usastats_query(PCTILES = 'mean')
usastats_means() # same but nicer looking format in console
usastats_means(dig=4)
# long list of variables:
x = intersect(EJAM::names_all_r, names(EJAM::usastats))
usastats_means(x)
usastats[!(usastats$PCTILE < 50), c("PCTILE", names_d)]
usastats[!(usastats$PCTILE < 50), c("PCTILE", names_e)]
## in 1 state, see mean and key percentiles for all demog and envt indicators
statestats_query('MD')
## in 1 state, see mean and key percentiles for just demog indicators
statestats_queryd('MD')
## 1 indicator in 1 state, see a few key percentiles and mean
statestats_query('MD','proximity.tsdf')
## mean of 1 indicator for each state
statestats_query(varnames = 'proximity.tsdf')
## using full blockgroup dataset, not lookup tables of percentiles,
blockgroupstats[, lapply(.SD, function(x) mean(x, na.rm=T)),
.SDcols= c(names_d, names_e)]
## see all total counts (not just US means),
## residential populations including subgroups,
## but not environmental indicators.
t(blockgroupstats[, lapply(.SD, function(x) mean(x, na.rm=T)),
.SDcols= c(names_e, names_d)])
} # }