Pensacola Bay FL - Detailed step-by-step

Standardize, clean and wrangle Water Quality Portal data in Pensacola and Perdido Bays into more analytic-ready formats using the harmonize_wq package

US EPA’s Water Quality Portal (WQP) aggregates water quality, biological, and physical data provided by many organizations and has become an essential resource with tools to query and retrieval data using python or R. Given the variety of data and variety of data originators, using the data in analysis often requires data cleaning to ensure it meets the required quality standards and data wrangling to get it in a more analytic-ready format. Recognizing the definition of analysis-ready varies depending on the analysis, the harmonixe_wq package is intended to be a flexible water quality specific framework to help:

  • Identify differences in data units (including speciation and basis)

  • Identify differences in sampling or analytic methods

  • Resolve data errors using transparent assumptions

  • Reduce data to the columns that are most commonly needed

  • Transform data from long to wide format

Domain experts must decide what data meets their quality standards for data comparability and any thresholds for acceptance or rejection.

Detailed step-by-step workflow

This example workflow takes a deeper dive into some of the expanded functionality to examine results for different water quality parameters in Pensacola and Perdido Bays

Install and import the required libraries

[1]:
import sys
#!python -m pip uninstall harmonize-wq --yes
#!python -m pip install harmonize-wq --yes
# Use pip to install the package from pypi or the latest from github
#!{sys.executable} -m pip install harmonize-wq
# For latest dev version
#!{sys.executable} -m pip install git+https://github.com/USEPA/harmonize-wq.git@new_release_0-3-8
[2]:
import dataretrieval.wqp as wqp
from harmonize_wq import wrangle
from harmonize_wq import location
from harmonize_wq import harmonize
from harmonize_wq import visualize
from harmonize_wq import clean
/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/dataretrieval/nadp.py:44: UserWarning: GDAL not installed. Some functions will not work.
  warnings.warn('GDAL not installed. Some functions will not work.')

Download location data using dataretrieval

[3]:
# Read geometry for Area of Interest from geojson file url and plot
aoi_url = r'https://raw.githubusercontent.com/USEPA/harmonize-wq/main/harmonize_wq/tests/data/PPBays_NCCA.geojson'
aoi_gdf = wrangle.as_gdf(aoi_url).to_crs(epsg=4326)  # already standard 4326
aoi_gdf.plot()
[3]:
<Axes: >
../_images/notebooks_Harmonize_Pensacola_Detailed_9_1.png
[4]:
# Note there are actually two polygons (one for each Bay)
aoi_gdf
# Spatial query parameters can be updated to run just one
bBox = wrangle.get_bounding_box(aoi_gdf)
# For only one bay, e.g., first is Pensacola Bay:
#bBox = wrangle.get_bounding_box(aoi_gdf, 0)
[5]:
# Build query with characteristicNames and the AOI extent
query = {'characteristicName': ['Phosphorus',
                                'Temperature, water',
                                'Depth, Secchi disk depth',
                                'Dissolved oxygen (DO)',
                                'Salinity',
                                'pH',
                                'Nitrogen',
                                'Conductivity',
                                'Organic carbon',
                                'Chlorophyll a',
                                'Turbidity',
                                'Sediment',
                                'Fecal Coliform',
                                'Escherichia coli']}
query['bBox'] = bBox
[6]:
# Query stations (can be slow)
stations, site_md = wqp.what_sites(**query)
[7]:
# Rows and columns for results
stations.shape
[7]:
(2725, 37)
[8]:
# First 5 rows
stations.head()
[8]:
OrganizationIdentifier OrganizationFormalName MonitoringLocationIdentifier MonitoringLocationName MonitoringLocationTypeName MonitoringLocationDescriptionText HUCEightDigitCode DrainageAreaMeasure/MeasureValue DrainageAreaMeasure/MeasureUnitCode ContributingDrainageAreaMeasure/MeasureValue ... AquiferName LocalAqfrName FormationTypeText AquiferTypeName ConstructionDateText WellDepthMeasure/MeasureValue WellDepthMeasure/MeasureUnitCode WellHoleDepthMeasure/MeasureValue WellHoleDepthMeasure/MeasureUnitCode ProviderName
0 USGS-AL USGS Alabama Water Science Center USGS-02376115 ELEVENMILE CREEK NR WEST PENSACOLA, FL Stream NaN 3140107.0 27.8 sq mi 27.8 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NWIS
1 USGS-AL USGS Alabama Water Science Center USGS-02377570 STYX RIVER NEAR ELSANOR, AL. Stream NaN 3140106.0 192.0 sq mi 192.0 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NWIS
2 USGS-AL USGS Alabama Water Science Center USGS-02377920 BLACKWATER RIVER AT US HWY 90 NR ROBERTSDALE, AL. Stream NaN 3140106.0 23.1 sq mi 23.1 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NWIS
3 USGS-AL USGS Alabama Water Science Center USGS-02377960 BLACKWATER RIVER AT CO RD 87 NEAR ELSANOR, AL. Stream NaN 3140106.0 56.6 sq mi 56.6 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NWIS
4 USGS-AL USGS Alabama Water Science Center USGS-02377975 BLACKWATER RIVER ABOVE SEMINOLE AL Stream NaN 3140106.0 40.2 sq mi NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NWIS

5 rows × 37 columns

[9]:
# Columns used for an example row
stations.iloc[0][['HorizontalCoordinateReferenceSystemDatumName', 'LatitudeMeasure', 'LongitudeMeasure']]
[9]:
HorizontalCoordinateReferenceSystemDatumName        NAD83
LatitudeMeasure                                 30.498252
LongitudeMeasure                               -87.335809
Name: 0, dtype: object
[10]:
# Harmonize location datums to 4326 (Note we keep intermediate columns using intermediate_columns=True)
stations_gdf = location.harmonize_locations(stations, out_EPSG=4326, intermediate_columns=True)
[11]:
location.harmonize_locations?
[12]:
# Rows and columns for results after running the function (5 new columns, only 2 new if intermediate_columns=False)
stations_gdf.shape
[12]:
(2725, 42)
[13]:
# Example results for the new columns
stations_gdf.iloc[0][['geom_orig', 'EPSG', 'QA_flag', 'geom', 'geometry']]
[13]:
geom_orig         (-87.3358086, 30.49825159)
EPSG                                  4269.0
QA_flag                                  NaN
geom         POINT (-87.3358086 30.49825159)
geometry     POINT (-87.3358086 30.49825159)
Name: 0, dtype: object
[14]:
# geom and geometry look the same but geometry is a special datatype
stations_gdf['geometry'].dtype
[14]:
<geopandas.array.GeometryDtype at 0x7f5f595a5e10>
[15]:
# Look at the different QA_flag flags that have been assigned,
# e.g., for bad datums or limited decimal precision
set(stations_gdf.loc[stations_gdf['QA_flag'].notna()]['QA_flag'])
[15]:
{'HorizontalCoordinateReferenceSystemDatumName: Bad datum OTHER, EPSG:4326 assumed',
 'HorizontalCoordinateReferenceSystemDatumName: Bad datum UNKWN, EPSG:4326 assumed',
 'LatitudeMeasure: Imprecise: lessthan3decimaldigits',
 'LatitudeMeasure: Imprecise: lessthan3decimaldigits; HorizontalCoordinateReferenceSystemDatumName: Bad datum UNKWN, EPSG:4326 assumed',
 'LatitudeMeasure: Imprecise: lessthan3decimaldigits; LongitudeMeasure: Imprecise: lessthan3decimaldigits',
 'LongitudeMeasure: Imprecise: lessthan3decimaldigits',
 'LongitudeMeasure: Imprecise: lessthan3decimaldigits; HorizontalCoordinateReferenceSystemDatumName: Bad datum UNKWN, EPSG:4326 assumed'}
[16]:
# Map it
stations_gdf.plot()
[16]:
<Axes: >
../_images/notebooks_Harmonize_Pensacola_Detailed_22_1.png
[17]:
# Clip to area of interest
stations_clipped = wrangle.clip_stations(stations_gdf, aoi_gdf)
[18]:
# Map it
stations_clipped.plot()
[18]:
<Axes: >
../_images/notebooks_Harmonize_Pensacola_Detailed_24_1.png
[19]:
# How many stations now?
len(stations_clipped)
[19]:
1305
[20]:
# To save the results to a shapefile
#import os
#path = ''  #specify the path (folder/directory) to save it to
#stations_clipped.to_file(os.path.join(path, 'PPBEP_stations.shp'))

Retrieve Characteristic Data

[21]:
# Now query for results
query['dataProfile'] = 'narrowResult'
res_narrow, md_narrow = wqp.get_results(**query)
/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/dataretrieval/wqp.py:83: DtypeWarning: Columns (10,13,15,17,19,20,21,22,23,28,31,33,34,36,58,60,61,64,65,69,70,71,72,73) have mixed types. Specify dtype option on import or set low_memory=False.
  df = pd.read_csv(StringIO(response.text), delimiter=',')
[22]:
df = res_narrow
df
[22]:
OrganizationIdentifier OrganizationFormalName ActivityIdentifier ActivityStartDate ActivityStartTime/Time ActivityStartTime/TimeZoneCode MonitoringLocationIdentifier ResultIdentifier DataLoggerLine ResultDetectionConditionText ... AnalysisEndTime/TimeZoneCode ResultLaboratoryCommentCode ResultLaboratoryCommentText ResultDetectionQuantitationLimitUrl LaboratoryAccreditationIndicator LaboratoryAccreditationAuthorityName TaxonomistAccreditationIndicator TaxonomistAccreditationAuthorityName LabSamplePreparationUrl ProviderName
0 21FLPNS_WQX FL Dept. of Environmental Protection, Northwes... 21FLPNS_WQX-1536988F1 2013-09-17 11:01:00 EST 21FLPNS_WQX-33030019 STORET-308146602 NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN STORET
1 21FLPNS_WQX FL Dept. of Environmental Protection, Northwes... 21FLPNS_WQX-1520810L 2013-07-23 10:01:00 EST 21FLPNS_WQX-33020146 STORET-308157908 NaN NaN ... NaN NaN NaN https://www.waterqualitydata.us/data/providers... NaN NaN NaN NaN NaN STORET
2 21FLCBA_WQX CHOCTAWHATCHEE BASIN ALLIANCE 21FLCBA_WQX-BAS219848-162813 2013-09-23 17:15:00 CST 21FLCBA_WQX-BAS02 STORET-760593202 NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN STORET
3 21FLSEAS_WQX Florida Department of Environmental Protection 21FLSEAS_WQX-028800618132 2013-06-18 11:01:00 EST 21FLSEAS_WQX-02SEAS880 STORET-310466105 NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN STORET
4 21FLBFA_WQX FL Dept of Environmental Protection , Bream Fi... 21FLBFA_WQX-1558337F1 2013-12-01 13:01:00 EST 21FLBFA_WQX-33020LT2 STORET-291224060 NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN STORET
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
398031 21AWIC ALABAMA DEPT. OF ENVIRONMENTAL MANAGEMENT - WA... 21AWIC-335811_1873104_173 2024-03-13 08:20:00 CDT 21AWIC-9768 STORET-1039487062 1873104.0 NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN STORET
398032 21AWIC ALABAMA DEPT. OF ENVIRONMENTAL MANAGEMENT - WA... 21AWIC-335642_1872423_173 2024-03-06 07:45:00 CDT 21AWIC-1208 STORET-1039486410 1872423.0 NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN STORET
398033 21AWIC ALABAMA DEPT. OF ENVIRONMENTAL MANAGEMENT - WA... 21AWIC-335642_1872426_173 2024-03-06 07:45:00 CDT 21AWIC-1208 STORET-1039486431 1872426.0 NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN STORET
398034 21AWIC ALABAMA DEPT. OF ENVIRONMENTAL MANAGEMENT - WA... 21AWIC-335811_1873106_173 2024-03-13 08:20:00 CDT 21AWIC-9768 STORET-1039487073 1873106.0 NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN STORET
398035 21AWIC ALABAMA DEPT. OF ENVIRONMENTAL MANAGEMENT - WA... 21AWIC-335728_1874876_173 2024-03-06 11:30:00 CDT 21AWIC-1152 STORET-1039490686 1874876.0 NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN STORET

398036 rows × 78 columns

[23]:
# Map number of usable results at each station
gdf_count = visualize.map_counts(df, stations_clipped)
legend_kwds = {"fmt": "{:.0f}", 'bbox_to_anchor':(1, 0.75)}
gdf_count.plot(column='cnt', cmap='Blues', legend=True, scheme='quantiles', legend_kwds=legend_kwds)
[23]:
<Axes: >
../_images/notebooks_Harmonize_Pensacola_Detailed_30_1.png

Harmonize Characteristic Results

Two options for functions to harmonize characteristics: harmonize_all() or harmonize_generic(). harmonize_all runs functions on all characteristics and lets you specify how to handle errors harmonize_generic runs functions only on the characteristic specified with char_val and lets you also choose output units, to keep intermediate columns and to do a quick report summarizing changes.

[24]:
# See Documentation
#harmonize.harmonize_all?
#harmonize.harmonize?
secchi disk depth
[25]:
# Each harmonize function has optional params, e.g., char_val is the characticName column value to use so we can send the entire df.
# Optional params: units='m', char_val='Depth, Secchi disk depth', out_col='Secchi', report=False)

# We start by demonstrating on secchi disk depth (units default to m, keep intermediate fields, see report)
df = harmonize.harmonize(df, 'Depth, Secchi disk depth', intermediate_columns=True, report=True)
-Usable results-
count    13323.000000
mean         1.195995
std          2.406123
min          0.000000
25%          0.600000
50%          1.000000
75%          1.500000
max        260.000000
dtype: float64
Unusable results: 75
Usable results with inferred units: 0
Results outside threshold (0.0 to 15.632730548117232): 1
../_images/notebooks_Harmonize_Pensacola_Detailed_35_1.png

The threshold is based on standard deviations and is currently only used in the histogram.

[26]:
# Look at a table of just Secchi results and focus on subset of columns
cols = ['MonitoringLocationIdentifier', 'ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'QA_flag', 'Units']
sechi_results = df.loc[df['CharacteristicName']=='Depth, Secchi disk depth', cols + ['Secchi']]
sechi_results
[26]:
MonitoringLocationIdentifier ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Units Secchi
53 21FLPNS_WQX-33020JF1 0.60 m NaN m 0.6 meter
60 21FLGW_WQX-3565 .3 m NaN m 0.3 meter
64 21FLBFA_WQX-33010016 1.5 m NaN m 1.5 meter
107 21AWIC-7290 .94 m NaN m 0.94 meter
130 21FLBFA_WQX-33010030 1.25 m NaN m 1.25 meter
... ... ... ... ... ... ...
397845 21AWIC-9630 2.65 m NaN m 2.65 meter
397870 21AWIC-1122 5.54 m NaN m 5.54 meter
397940 21AWIC-1063 1.14 m NaN m 1.14 meter
397984 21AWIC-7290 .65 m NaN m 0.65 meter
398019 21AWIC-1208 1.22 m NaN m 1.22 meter

13398 rows × 6 columns

[27]:
# Look at unusable(NAN) results
sechi_results.loc[df['Secchi'].isna()]
[27]:
MonitoringLocationIdentifier ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Units Secchi
147997 21FLCBA_WQX-OKA-CB-BASS-1 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... m NaN
148044 21FLKWAT_WQX-OKA-CBA-GAP-3-1 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... m NaN
148395 21FLCBA_WQX-OKA-CBA-GAP-3-1 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... m NaN
148488 21FLCBA_WQX-OKA-CB-BASS-1 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... m NaN
149503 21FLKWAT_WQX-OKA-CB-BASS-1 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... m NaN
... ... ... ... ... ... ...
394973 21FLKWAT_WQX-SAN-SKI WATCH-1 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... m NaN
395025 21FLCBA_WQX-OKA-CBA-GAP-1-1 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... m NaN
395292 21FLCBA_WQX-OKA-CB-BASS-2 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... m NaN
395295 21FLCBA_WQX-OKA-CBA-GAP-3-1 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... m NaN
395477 21FLKWAT_WQX-SAN-SKI WATCH-5 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... m NaN

75 rows × 6 columns

[28]:
# look at the QA flag for first row from above
list(sechi_results.loc[df['Secchi'].isna()]['QA_flag'])[0]
[28]:
'ResultMeasureValue: "Not Reported" result cannot be used; ResultMeasure/MeasureUnitCode: MISSING UNITS, m assumed'
[29]:
# All cases where there was a QA flag
sechi_results.loc[df['QA_flag'].notna()]
[29]:
MonitoringLocationIdentifier ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Units Secchi
147997 21FLCBA_WQX-OKA-CB-BASS-1 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... m NaN
148044 21FLKWAT_WQX-OKA-CBA-GAP-3-1 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... m NaN
148395 21FLCBA_WQX-OKA-CBA-GAP-3-1 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... m NaN
148488 21FLCBA_WQX-OKA-CB-BASS-1 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... m NaN
149503 21FLKWAT_WQX-OKA-CB-BASS-1 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... m NaN
... ... ... ... ... ... ...
394973 21FLKWAT_WQX-SAN-SKI WATCH-1 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... m NaN
395025 21FLCBA_WQX-OKA-CBA-GAP-1-1 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... m NaN
395292 21FLCBA_WQX-OKA-CB-BASS-2 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... m NaN
395295 21FLCBA_WQX-OKA-CBA-GAP-3-1 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... m NaN
395477 21FLKWAT_WQX-SAN-SKI WATCH-5 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... m NaN

75 rows × 6 columns

If both value and unit are missing nothing can be done, a unitless (NaN) value is assumed as to be in default units but a QA_flag is added

[30]:
# Aggregate Secchi data by station
visualize.station_summary(sechi_results, 'Secchi')
[30]:
MonitoringLocationIdentifier cnt mean
0 11NPSWRD_WQX-GUIS_CMP_PKT01 12 2.333333
1 11NPSWRD_WQX-GUIS_CMP_PKT02 17 2.411765
2 11NPSWRD_WQX-GUIS_CMP_PKT03 3 2.333333
3 21AWIC-1063 118 0.773729
4 21AWIC-1122 58 2.859034
... ... ... ...
910 NARS_WQX-NCCA10-1432 1 1.075000
911 NARS_WQX-NCCA10-1433 1 1.423333
912 NARS_WQX-NCCA10-1434 1 2.400000
913 NARS_WQX-NCCA10-1488 1 0.736667
914 NARS_WQX-NCCA10-2432 1 1.600000

915 rows × 3 columns

[31]:
# Map number of usable results at each station
gdf_count = visualize.map_counts(sechi_results, stations_clipped)
gdf_count.plot(column='cnt', cmap='Blues', legend=True, scheme='quantiles', legend_kwds=legend_kwds)
[31]:
<Axes: >
../_images/notebooks_Harmonize_Pensacola_Detailed_43_1.png
[32]:
# Map average secchi depth results at each station
gdf_avg = visualize.map_measure(sechi_results, stations_clipped, 'Secchi')
gdf_avg.plot(column='mean', cmap='OrRd', legend=True)
[32]:
<Axes: >
../_images/notebooks_Harmonize_Pensacola_Detailed_44_1.png
Temperature

The default error=’raise’, makes it so that there is an error when there is a dimensionality error (i.e. when units can’t be converted). Here we would get the error: DimensionalityError: Cannot convert from ‘count’ (dimensionless) to ‘degree_Celsius’ ([temperature])

[33]:
#'Temperature, water'
# errors=‘ignore’, invalid dimension conversions will return the NaN.
df = harmonize.harmonize(df, 'Temperature, water', intermediate_columns=True, report=True, errors='ignore')
-Usable results-
count    80160.000000
mean        21.920816
std         10.423333
min        -12.944444
25%         17.000000
50%         22.200000
75%         27.110000
max       1876.000000
dtype: float64
Unusable results: 2
Usable results with inferred units: 10
Results outside threshold (0.0 to 84.4608124163855): 6
../_images/notebooks_Harmonize_Pensacola_Detailed_47_1.png
[34]:
# Look at what was changed
cols = ['MonitoringLocationIdentifier', 'ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'QA_flag', 'Temperature', 'Units']
temperature_results = df.loc[df['CharacteristicName']=='Temperature, water', cols]
temperature_results
[34]:
MonitoringLocationIdentifier ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Temperature Units
2 21FLCBA_WQX-BAS02 78.9 deg F NaN 26.0555555555556 degree_Celsius degF
23 21FLPNS_WQX-33030019 23.12 deg C NaN 23.12 degree_Celsius degC
36 21FLPNS_WQX-330300G9 16.43 deg C NaN 16.43 degree_Celsius degC
38 21FLPNS_WQX-33010H24 29.78 deg C NaN 29.78 degree_Celsius degC
40 21FLPNS_WQX-33010G10 26.72 deg C NaN 26.72 degree_Celsius degC
... ... ... ... ... ... ...
398023 21AWIC-1606 14.93 deg C NaN 14.93 degree_Celsius degC
398028 21AWIC-9631 18.1337 deg C NaN 18.1337 degree_Celsius degC
398030 21AWIC-7290 18.8128 deg C NaN 18.8128 degree_Celsius degC
398032 21AWIC-1208 19.1005 deg C NaN 19.1005 degree_Celsius degC
398033 21AWIC-1208 19.2875 deg C NaN 19.2875 degree_Celsius degC

80162 rows × 6 columns

In the above we can see examples where the results were in deg F and in the result field they’ve been converted into degree_Celsius

[35]:
# Examine missing units
temperature_results.loc[df['ResultMeasure/MeasureUnitCode'].isna()]
[35]:
MonitoringLocationIdentifier ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Temperature Units
156307 NARS_WQX-OWW04440-0401 NaN NaN ResultMeasureValue: missing (NaN) result; Resu... NaN degC
218976 21FLCBA-FWB05 79.8 NaN ResultMeasure/MeasureUnitCode: MISSING UNITS, ... 79.8 degree_Celsius degC
219042 21FLCBA-FWB05 81.7 NaN ResultMeasure/MeasureUnitCode: MISSING UNITS, ... 81.7 degree_Celsius degC
219923 21FLCBA-FWB02 82.1 NaN ResultMeasure/MeasureUnitCode: MISSING UNITS, ... 82.1 degree_Celsius degC
219924 21FLCBA-FWB02 82.6 NaN ResultMeasure/MeasureUnitCode: MISSING UNITS, ... 82.6 degree_Celsius degC
219925 21FLCBA-FWB02 71.8 NaN ResultMeasure/MeasureUnitCode: MISSING UNITS, ... 71.8 degree_Celsius degC
219926 21FLCBA-FWB02 79.4 NaN ResultMeasure/MeasureUnitCode: MISSING UNITS, ... 79.4 degree_Celsius degC
225607 21FLCBA-RIV02 74.2 NaN ResultMeasure/MeasureUnitCode: MISSING UNITS, ... 74.2 degree_Celsius degC
225608 21FLCBA-RIV02 74.2 NaN ResultMeasure/MeasureUnitCode: MISSING UNITS, ... 74.2 degree_Celsius degC
230238 21FLCBA-FWB01 83.3 NaN ResultMeasure/MeasureUnitCode: MISSING UNITS, ... 83.3 degree_Celsius degC
230322 21FLCBA-FWB01 71.2 NaN ResultMeasure/MeasureUnitCode: MISSING UNITS, ... 71.2 degree_Celsius degC

We can see where the units were missing, the results were assumed to be in degree_Celsius already

[36]:
# This is also noted in the QA_flag field
list(temperature_results.loc[df['ResultMeasure/MeasureUnitCode'].isna(), 'QA_flag'])[0]
[36]:
'ResultMeasureValue: missing (NaN) result; ResultMeasure/MeasureUnitCode: MISSING UNITS, degC assumed'
[37]:
# Look for any without usable results
temperature_results.loc[df['Temperature'].isna()]
[37]:
MonitoringLocationIdentifier ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Temperature Units
47448 11NPSWRD_WQX-GUIS_NALO NaN deg C ResultMeasureValue: missing (NaN) result NaN degC
156307 NARS_WQX-OWW04440-0401 NaN NaN ResultMeasureValue: missing (NaN) result; Resu... NaN degC
[38]:
# Aggregate temperature data by station
visualize.station_summary(temperature_results, 'Temperature')
[38]:
MonitoringLocationIdentifier cnt mean
0 11NPSWRD_WQX-GUIS_ADEM_ALPT 30 24.986667
1 11NPSWRD_WQX-GUIS_BCCA 1 36.800000
2 11NPSWRD_WQX-GUIS_BISA 32 22.696250
3 11NPSWRD_WQX-GUIS_BOPI 1 32.000000
4 11NPSWRD_WQX-GUIS_CMP_PKT01 20 25.125000
... ... ... ...
2325 UWFCEDB_WQX-SRC-AI31-22 10 23.020000
2326 UWFCEDB_WQX-SRC-AI36-22 10 23.230000
2327 UWFCEDB_WQX-SRC-AI42-22 10 22.650000
2328 UWFCEDB_WQX-SRC-AI44-22 10 22.890000
2329 UWFCEDB_WQX-SRC-AK41-22 8 21.462500

2330 rows × 3 columns

[39]:
# Map number of usable results at each station
gdf_count = visualize.map_counts(temperature_results, stations_clipped)
gdf_count.plot(column='cnt', cmap='Blues', legend=True, scheme='quantiles', legend_kwds=legend_kwds)
[39]:
<Axes: >
../_images/notebooks_Harmonize_Pensacola_Detailed_55_1.png
[40]:
# Map average temperature results at each station
gdf_temperature = visualize.map_measure(temperature_results, stations_clipped, 'Temperature')
gdf_temperature.plot(column='mean', cmap='OrRd', legend=True)
[40]:
<Axes: >
../_images/notebooks_Harmonize_Pensacola_Detailed_56_1.png

Dissolved oxygen

[41]:
# look at Dissolved oxygen (DO), but this time without intermediate fields
df = harmonize.harmonize(df, 'Dissolved oxygen (DO)')

Note: Imediately when we run a harmonization function without the intermediate fields they’re deleted.

[42]:
# Look at what was changed
cols = ['MonitoringLocationIdentifier', 'ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'QA_flag', 'DO']
do_res = df.loc[df['CharacteristicName']=='Dissolved oxygen (DO)', cols]
do_res
[42]:
MonitoringLocationIdentifier ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag DO
7 21FLPNS_WQX-33030D71 6.64 mg/L NaN 6.64 milligram / liter
13 21FLNUTT_WQX-PB02 8.11 mg/L NaN 8.11 milligram / liter
21 21FLCBA_WQX-SRS03 6.28 mg/L NaN 6.28 milligram / liter
22 21FLPNS_WQX-33020K20 4.53 mg/L NaN 4.53 milligram / liter
26 21FLPNS_WQX-33030019 9.32 mg/L NaN 9.32 milligram / liter
... ... ... ... ... ...
398020 21AWIC-7290 1.0486 mg/L NaN 1.0486 milligram / liter
398021 21AWIC-9630 7.7673 mg/L NaN 7.7673 milligram / liter
398022 21AWIC-9631 7.3366 mg/L NaN 7.3366 milligram / liter
398025 21AWIC-7290 .4967 mg/L NaN 0.4967 milligram / liter
398027 21AWIC-1122 8.261 mg/L NaN 8.261 milligram / liter

62645 rows × 5 columns

[43]:
do_res.loc[do_res['ResultMeasure/MeasureUnitCode']!='mg/l']
[43]:
MonitoringLocationIdentifier ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag DO
7 21FLPNS_WQX-33030D71 6.64 mg/L NaN 6.64 milligram / liter
13 21FLNUTT_WQX-PB02 8.11 mg/L NaN 8.11 milligram / liter
21 21FLCBA_WQX-SRS03 6.28 mg/L NaN 6.28 milligram / liter
22 21FLPNS_WQX-33020K20 4.53 mg/L NaN 4.53 milligram / liter
26 21FLPNS_WQX-33030019 9.32 mg/L NaN 9.32 milligram / liter
... ... ... ... ... ...
398020 21AWIC-7290 1.0486 mg/L NaN 1.0486 milligram / liter
398021 21AWIC-9630 7.7673 mg/L NaN 7.7673 milligram / liter
398022 21AWIC-9631 7.3366 mg/L NaN 7.3366 milligram / liter
398025 21AWIC-7290 .4967 mg/L NaN 0.4967 milligram / liter
398027 21AWIC-1122 8.261 mg/L NaN 8.261 milligram / liter

39567 rows × 5 columns

Though there were no results in %, the conversion from percent saturation (%) to mg/l is special. This equation is being improved by integrating tempertaure and pressure instead of assuming STP (see DO_saturation())

[44]:
# Aggregate DO data by station
visualize.station_summary(do_res, 'DO')
[44]:
MonitoringLocationIdentifier cnt mean
0 11NPSWRD_WQX-GUIS_ADEM_ALPT 30 6.698000
1 11NPSWRD_WQX-GUIS_BCCA 1 0.270000
2 11NPSWRD_WQX-GUIS_BISA 32 7.194375
3 11NPSWRD_WQX-GUIS_BOPI 1 7.540000
4 11NPSWRD_WQX-GUIS_FPPO 1 9.950000
... ... ... ...
1855 UWFCEDB_WQX-SRC-AI31-22 20 3.723390
1856 UWFCEDB_WQX-SRC-AI36-22 20 3.513705
1857 UWFCEDB_WQX-SRC-AI42-22 20 3.677337
1858 UWFCEDB_WQX-SRC-AI44-22 20 3.658370
1859 UWFCEDB_WQX-SRC-AK41-22 16 2.706512

1860 rows × 3 columns

[45]:
# Map number of usable results at each station
gdf_count = visualize.map_counts(do_res, stations_clipped)
gdf_count.plot(column='cnt', cmap='Blues', legend=True, scheme='quantiles', legend_kwds=legend_kwds)
[45]:
<Axes: >
../_images/notebooks_Harmonize_Pensacola_Detailed_64_1.png
[46]:
# Map Averages at each station
gdf_avg = visualize.map_measure(do_res, stations_clipped, 'DO')
gdf_avg.plot(column='mean', cmap='OrRd', legend=True)
[46]:
<Axes: >
../_images/notebooks_Harmonize_Pensacola_Detailed_65_1.png

pH

[47]:
# pH, this time looking at a report
df = harmonize.harmonize(df, 'pH', report=True)
-Usable results-
count    53851.000000
mean         7.350465
std          0.904778
min          0.500000
25%          6.890000
50%          7.700000
75%          8.000000
max         16.200000
dtype: float64
Unusable results: 51
Usable results with inferred units: 36
Results outside threshold (0.0 to 12.779133009876027): 1
../_images/notebooks_Harmonize_Pensacola_Detailed_67_1.png

Note the warnings that occur when a unit is not recognized by the package. These occur even when report=False. Future versions could include these as defined units for pH, but here it wouldn’t alter results.

[48]:
df.loc[df['CharacteristicName']=='pH', ['ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'QA_flag', 'pH']]
[48]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag pH
0 7.29 None NaN 7.29 dimensionless
12 7.45 None NaN 7.45 dimensionless
15 6.57 None NaN 6.57 dimensionless
16 6.57 None NaN 6.57 dimensionless
18 7.72 None NaN 7.72 dimensionless
... ... ... ... ...
398003 7.893 None NaN 7.893 dimensionless
398013 7.206 None NaN 7.206 dimensionless
398015 4.78 None NaN 4.78 dimensionless
398018 7.9835 None NaN 7.9835 dimensionless
398034 7.196 None NaN 7.196 dimensionless

53902 rows × 4 columns

‘None’ is uninterpretable and replaced with NaN, which then gets replaced with ‘dimensionless’ since pH is unitless

Salinity

[49]:
# Salinity
df = harmonize.harmonize(df, 'Salinity', report=True)
-Usable results-
count    68190.000000
mean        16.236781
std        156.409068
min          0.000000
25%          6.500000
50%         16.400000
75%         23.520000
max      37782.000000
dtype: float64
Unusable results: 416
Usable results with inferred units: 10
Results outside threshold (0.0 to 954.6911897215225): 4
../_images/notebooks_Harmonize_Pensacola_Detailed_72_1.png
[50]:
cols = ['ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'QA_flag', 'Salinity']
df.loc[df['CharacteristicName']=='Salinity', cols]
[50]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Salinity
4 18.9 ppth NaN 18.9 Practical_Salinity_Units
6 11.82 ppth NaN 11.82 Practical_Salinity_Units
10 .03 ppt NaN 0.03 Practical_Salinity_Units
17 0.50 ppth NaN 0.5 Practical_Salinity_Units
19 3.3 ppth NaN 3.3 Practical_Salinity_Units
... ... ... ... ...
398017 31.5583 ppt NaN 31.5583 Practical_Salinity_Units
398026 .3046 ppt NaN 0.3046 Practical_Salinity_Units
398029 17.7888 ppt NaN 17.7888 Practical_Salinity_Units
398031 17.1252 ppt NaN 17.1252 Practical_Salinity_Units
398035 .02 ppt NaN 0.02 Practical_Salinity_Units

68606 rows × 4 columns

Nitrogen

[51]:
# Nitrogen
df = harmonize.harmonize(df, 'Nitrogen', report=True)
/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/harmonize_wq/wq_data.py:395: UserWarning: WARNING: 'cm3/g' UNDEFINED UNIT for Nitrogen
  warn("WARNING: " + problem)
-Usable results-
count     109.000000
mean       26.920174
std       160.257726
min         0.000700
25%         0.410000
50%         0.629000
75%         1.120000
max      1630.000000
dtype: float64
Unusable results: 4
Usable results with inferred units: 0
Results outside threshold (0.0 to 988.466532186079): 1
../_images/notebooks_Harmonize_Pensacola_Detailed_75_2.png
[52]:
cols = ['ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'QA_flag', 'Nitrogen']
df.loc[df['CharacteristicName']=='Nitrogen', cols]
[52]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Nitrogen
43125 0.3 mg/L NaN 0.3 milligram / liter
43334 0.36 mg/L NaN 0.36 milligram / liter
43483 0.33875 mg/L NaN 0.33875 milligram / liter
43606 0.53125 mg/L NaN 0.53125 milligram / liter
44139 135 mg/kg NaN 135.00000000000003 milligram / liter
... ... ... ... ...
396834 18.69 mg/l NaN 18.69 milligram / liter
396841 16.18 mg/l NaN 16.18 milligram / liter
396842 18.99 mg/l NaN 18.99 milligram / liter
396845 18.72 mg/l NaN 18.72 milligram / liter
396847 17.61 mg/l NaN 17.61 milligram / liter

113 rows × 4 columns

Conductivity

[53]:
# Conductivity
df = harmonize.harmonize(df, 'Conductivity', report=True)
-Usable results-
count     1818.000000
mean     17085.221414
std      16116.889030
min          0.040000
25%        130.000000
50%      16994.750000
75%      30306.650000
max      54886.200000
dtype: float64
Unusable results: 8
Usable results with inferred units: 0
Results outside threshold (0.0 to 113786.55559242623): 0
../_images/notebooks_Harmonize_Pensacola_Detailed_78_1.png
[54]:
cols = ['ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'QA_flag', 'Conductivity']
df.loc[df['CharacteristicName']=='Conductivity', cols]
[54]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Conductivity
8 19204.2 umho/cm NaN 19204.2 microsiemens / centimeter
50 222.3 umho/cm NaN 222.3 microsiemens / centimeter
232 102.8 umho/cm NaN 102.8 microsiemens / centimeter
394 11017.5 umho/cm NaN 11017.5 microsiemens / centimeter
746 32 umho/cm NaN 32.0 microsiemens / centimeter
... ... ... ... ...
397047 110 umho/cm NaN 110.0 microsiemens / centimeter
397054 65 umho/cm NaN 65.0 microsiemens / centimeter
397055 110 umho/cm NaN 110.0 microsiemens / centimeter
397058 390 umho/cm NaN 390.0 microsiemens / centimeter
397061 65 umho/cm NaN 65.0 microsiemens / centimeter

1826 rows × 4 columns

Chlorophyll a

[55]:
# Chlorophyll a
df = harmonize.harmonize(df, 'Chlorophyll a', report=True)
/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/harmonize_wq/wq_data.py:395: UserWarning: WARNING: 'None' UNDEFINED UNIT for Chlorophyll
  warn("WARNING: " + problem)
/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/harmonize_wq/wq_data.py:395: UserWarning: WARNING: 'ug/cm2' UNDEFINED UNIT for Chlorophyll
  warn("WARNING: " + problem)
-Usable results-
count    9251.000000
mean        1.171505
std         1.200192
min        -0.840000
25%         0.008395
50%         0.970000
75%         1.850000
max         9.990000
dtype: float64
Unusable results: 574
Usable results with inferred units: 0
Results outside threshold (0.0 to 8.372654750450925): 8
../_images/notebooks_Harmonize_Pensacola_Detailed_81_2.png
[56]:
cols = ['ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'QA_flag', 'Chlorophyll']
df.loc[df['CharacteristicName']=='Chlorophyll a', cols]
[56]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Chlorophyll
264 NaN NaN ResultMeasureValue: missing (NaN) result; Resu... NaN
551 NaN NaN ResultMeasureValue: missing (NaN) result; Resu... NaN
670 2.3 mg/m3 NaN 0.0023000000000000004 milligram / liter
1230 NaN NaN ResultMeasureValue: missing (NaN) result; Resu... NaN
1370 2.9 mg/m3 NaN 0.0029000000000000007 milligram / liter
... ... ... ... ...
397850 6.3 mg/m3 NaN 0.006300000000000001 milligram / liter
397859 NaN NaN ResultMeasureValue: missing (NaN) result; Resu... NaN
397875 1.1 mg/m3 NaN 0.0011000000000000003 milligram / liter
397976 4.4 mg/m3 NaN 0.004400000000000001 milligram / liter
397978 NaN NaN ResultMeasureValue: missing (NaN) result; Resu... NaN

9825 rows × 4 columns

Organic Carbon

[57]:
# Organic carbon (%)
df = harmonize.harmonize(df, 'Organic carbon', report=True)
-Usable results-
count      4639.000000
mean       1184.028265
std       11819.016505
min           0.000000
25%           2.700000
50%           4.300000
75%           8.400000
max      410000.000000
dtype: float64
Unusable results: 163
Usable results with inferred units: 0
Results outside threshold (0.0 to 72098.12729220463): 22
../_images/notebooks_Harmonize_Pensacola_Detailed_84_1.png
[58]:
cols = ['ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'QA_flag', 'Carbon']
df.loc[df['CharacteristicName']=='Organic carbon', cols]
[58]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Carbon
127 2.6 mg/L NaN 2.6 milligram / liter
178 5.2 mg/L NaN 5.2 milligram / liter
218 3.9 mg/L NaN 3.9 milligram / liter
296 1.0 mg/L NaN 1.0 milligram / liter
315 2.6 mg/L NaN 2.6 milligram / liter
... ... ... ... ...
397818 5.439 mg/L NaN 5.439 milligram / liter
397926 5.347 mg/L NaN 5.347 milligram / liter
397946 3.424 mg/L NaN 3.424 milligram / liter
398001 6.301 mg/L NaN 6.301 milligram / liter
398024 4.297 mg/L NaN 4.297 milligram / liter

4802 rows × 4 columns

Turbidity

[59]:
# Turbidity (NTU)
df = harmonize.harmonize(df, 'Turbidity', report=True)
-Usable results-
count    38014.000000
mean         9.049020
std        210.608888
min         -0.840000
25%          1.430000
50%          2.510000
75%          4.810000
max      32342.452300
dtype: float64
Unusable results: 167
Usable results with inferred units: 10
Results outside threshold (0.0 to 1272.7023456013437): 45
../_images/notebooks_Harmonize_Pensacola_Detailed_87_1.png
[60]:
cols = ['ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'QA_flag', 'Turbidity']
df.loc[df['CharacteristicName']=='Turbidity', cols]
[60]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Turbidity
14 0 NTU NaN 0.0 Nephelometric_Turbidity_Units
54 5.6 NTU NaN 5.6 Nephelometric_Turbidity_Units
56 28 NTU NaN 28.0 Nephelometric_Turbidity_Units
90 1.4 NTU NaN 1.4 Nephelometric_Turbidity_Units
92 4.7 NTU NaN 4.7 Nephelometric_Turbidity_Units
... ... ... ... ...
397925 2.6 NTU NaN 2.6 Nephelometric_Turbidity_Units
397943 1.7 NTU NaN 1.7 Nephelometric_Turbidity_Units
397970 3.9 NTU NaN 3.9 Nephelometric_Turbidity_Units
397989 2.1 NTU NaN 2.1 Nephelometric_Turbidity_Units
397990 7.9 NTU NaN 7.9 Nephelometric_Turbidity_Units

38181 rows × 4 columns

Sediment

[61]:
# Sediment
df = harmonize.harmonize(df, 'Sediment', report=False)
[62]:
cols = ['ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'QA_flag', 'Sediment']
df.loc[df['CharacteristicName']=='Sediment', cols]
[62]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Sediment

Phosphorus

Note: must be merged w/ activities (package runs query by site if not already merged)

[63]:
# Phosphorus
df = harmonize.harmonize(df, 'Phosphorus')
2 Phosphorus sample fractions not in frac_dict
2 Phosphorus sample fractions not in frac_dict found in expected domains, mapped to "Other_Phosphorus"

Note: warnings for unexpected characteristic fractions. Fractions are each seperated out into their own result column.

[64]:
# All Phosphorus
cols = ['ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'QA_flag', 'TDP_Phosphorus']
df.loc[df['Phosphorus'].notna(), cols]
[64]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag TDP_Phosphorus
20 .061 mg/L NaN NaN
96 0.03 mg/L NaN NaN
147 .13 mg/L NaN NaN
161 0.003 mg/L NaN NaN
360 0.002 mg/L NaN NaN
... ... ... ... ...
397821 .487 mg/L NaN NaN
397825 .04 mg/L NaN NaN
397835 .091 mg/L NaN NaN
397977 .151 mg/L NaN NaN
398007 .107 mg/L NaN NaN

5730 rows × 4 columns

[65]:
# Total phosphorus
df.loc[df['TP_Phosphorus'].notna(), cols]
[65]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag TDP_Phosphorus
20 .061 mg/L NaN NaN
96 0.03 mg/L NaN NaN
147 .13 mg/L NaN NaN
161 0.003 mg/L NaN NaN
360 0.002 mg/L NaN NaN
... ... ... ... ...
397821 .487 mg/L NaN NaN
397825 .04 mg/L NaN NaN
397835 .091 mg/L NaN NaN
397977 .151 mg/L NaN NaN
398007 .107 mg/L NaN NaN

5000 rows × 4 columns

[66]:
# Total dissolved phosphorus
df.loc[df['TDP_Phosphorus'].notna(), cols]
[66]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag TDP_Phosphorus
3657 0.019 mg/L NaN 0.019 milligram / liter
8220 0.002 mg/L NaN 0.002 milligram / liter
14068 0.003 mg/L NaN 0.003 milligram / liter
17235 0.019 mg/L NaN 0.019 milligram / liter
56247 0.002 mg/L NaN 0.002 milligram / liter
58089 0.017 mg/L NaN 0.017 milligram / liter
73461 0.021 mg/L NaN 0.021 milligram / liter
76250 0.003 mg/L NaN 0.003 milligram / liter
101142 0.020 mg/L NaN 0.02 milligram / liter
106490 0.002 mg/L NaN 0.002 milligram / liter
155964 0.00806 mg/L NaN 0.00806 milligram / liter
159273 0.000031 mg/L NaN 3.1e-05 milligram / liter
160616 0.002542 mg/L NaN 0.002542 milligram / liter
161132 0.00341 mg/L NaN 0.00341 milligram / liter
200480 0.00372 mg/L NaN 0.00372 milligram / liter
202494 0.00961 mg/L NaN 0.00961 milligram / liter
203463 0.00124 mg/L NaN 0.00124 milligram / liter
204221 0.01271 mg/L NaN 0.01271 milligram / liter
395702 0.030 mg/l as P NaN 0.03 milligram / liter
395711 0.033 mg/l as P NaN 0.033 milligram / liter
395714 0.024 mg/l as P NaN 0.024 milligram / liter
395720 0.028 mg/l as P NaN 0.028 milligram / liter
395729 0.021 mg/l as P NaN 0.021 milligram / liter
395734 0.023 mg/l as P NaN 0.023 milligram / liter
395746 0.037 mg/l as P NaN 0.037 milligram / liter
395811 0.023 mg/l as P NaN 0.023 milligram / liter
395819 0.02 mg/l as P NaN 0.02 milligram / liter
395835 0.04 mg/l as P NaN 0.04 milligram / liter
395850 0.03 mg/l as P NaN 0.03 milligram / liter
395859 0.025 mg/l as P NaN 0.025 milligram / liter
395886 0.05 mg/l as P NaN 0.05 milligram / liter
395895 0.15 mg/l as P NaN 0.15 milligram / liter
395915 0.03 mg/l as P NaN 0.03 milligram / liter
396032 0.02 mg/l as P NaN 0.02 milligram / liter
396054 0.07 mg/l as P NaN 0.07 milligram / liter
396062 0.08 mg/l as P NaN 0.08 milligram / liter
396077 0.02 mg/l as P NaN 0.02 milligram / liter
396097 0.02 mg/l as P NaN 0.02 milligram / liter
396109 0.04 mg/l as P NaN 0.04 milligram / liter
396129 0.02 mg/l as P NaN 0.02 milligram / liter
396142 0.05 mg/l as P NaN 0.05 milligram / liter
396416 0.03 mg/l as P NaN 0.03 milligram / liter
396423 0.05 mg/l as P NaN 0.05 milligram / liter
[67]:
# All other phosphorus sample fractions
df.loc[df['Other_Phosphorus'].notna(), cols]
[67]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag TDP_Phosphorus
25162 .5 mg/L NaN NaN
25272 .036 mg/L NaN NaN
26600 .089 mg/L NaN NaN
27626 .017 mg/L NaN NaN
28729 .067 mg/L NaN NaN
... ... ... ... ...
397017 .18 mg/L NaN NaN
397028 .25 mg/L NaN NaN
397040 .16 mg/L NaN NaN
397043 .18 mg/L NaN NaN
397052 .31 mg/L NaN NaN

687 rows × 4 columns

Bacteria

Some equivalence assumptions are built-in where bacteria counts that are not equivalent are treated as such because there is no standard way to convert from one to another.

Fecal Coliform

[68]:
# Known unit with bad dimensionality ('Colony_Forming_Units * milliliter')
df = harmonize.harmonize(df, 'Fecal Coliform', report=True, errors='ignore')
/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/harmonize_wq/convert.py:128: UserWarning: WARNING: 'cfu/100mL' converted to NaN
  warn(f"WARNING: '{unit}' converted to NaN")
/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/harmonize_wq/convert.py:128: UserWarning: WARNING: 'MPN/100mL' converted to NaN
  warn(f"WARNING: '{unit}' converted to NaN")
/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/harmonize_wq/convert.py:128: UserWarning: WARNING: 'CFU/100mL' converted to NaN
  warn(f"WARNING: '{unit}' converted to NaN")
-Usable results-
count    10035.000000
mean        45.537618
std        448.839329
min          0.000000
25%          4.000000
50%          8.000000
75%         33.000000
max      33000.000000
dtype: float64
Unusable results: 40551
Usable results with inferred units: 0
Results outside threshold (0.0 to 2738.5735941387825): 6
../_images/notebooks_Harmonize_Pensacola_Detailed_103_2.png
[69]:
cols = ['ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'QA_flag', 'Fecal_Coliform']
df.loc[df['CharacteristicName']=='Fecal Coliform', cols]
[69]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Fecal_Coliform
1 80 cfu/100mL NaN NaN
3 2 MPN/100mL NaN NaN
5 *Non-detect NaN ResultMeasureValue: "*Non-detect" result canno... NaN
9 *Non-detect NaN ResultMeasureValue: "*Non-detect" result canno... NaN
28 40 cfu/100mL NaN NaN
... ... ... ... ...
396739 145 cfu/100mL NaN NaN
396765 317 cfu/100mL NaN NaN
396787 60 cfu/100mL NaN NaN
396912 600 cfu/100mL NaN NaN
396914 245 cfu/100mL NaN NaN

50586 rows × 4 columns

Escherichia coli

[70]:
# Known unit with bad dimensionality ('Colony_Forming_Units * milliliter')
df = harmonize.harmonize(df, 'Escherichia coli', report=True, errors='ignore')
/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/harmonize_wq/convert.py:128: UserWarning: WARNING: 'cfu/100mL' converted to NaN
  warn(f"WARNING: '{unit}' converted to NaN")
/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/harmonize_wq/convert.py:128: UserWarning: WARNING: 'MPN/100mL' converted to NaN
  warn(f"WARNING: '{unit}' converted to NaN")
/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/harmonize_wq/convert.py:128: UserWarning: WARNING: 'CFU/100mL' converted to NaN
  warn(f"WARNING: '{unit}' converted to NaN")
-Usable results-
count      22.000000
mean      501.863636
std       610.053260
min         4.000000
25%         9.500000
50%        77.500000
75%      1000.000000
max      1700.000000
dtype: float64
Unusable results: 7974
Usable results with inferred units: 0
Results outside threshold (0.0 to 4162.183198738116): 0
../_images/notebooks_Harmonize_Pensacola_Detailed_106_2.png
[71]:
cols = ['ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'QA_flag', 'E_coli']
df.loc[df['CharacteristicName']=='Escherichia coli', cols]
[71]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag E_coli
11 0 cfu/100mL NaN NaN
37 1000 cfu/100mL NaN NaN
45 0 cfu/100mL NaN NaN
99 33.3333333333333 cfu/100mL NaN NaN
136 0 cfu/100mL NaN NaN
... ... ... ... ...
397811 28 MPN/100mL NaN NaN
397826 390 MPN/100mL NaN NaN
397838 150 MPN/100mL NaN NaN
397898 150 MPN/100mL NaN NaN
397907 53 MPN/100mL NaN NaN

7996 rows × 4 columns

Combining Salinity and Conductivity

Convert module has various functions to convert from one unit or characteristic to another. Some of these are used within a single characteristic during harmonization (e.g. DO saturation to concentration) while others are intended to model one characteristic as an indicator of another (e.g. estimate salinity from conductivity).

Note: this should only be done after both characteristic fields have been harmonized. Results before and after should be inspected, thresholds for outliers applied, and consider adding a QA_flag for modeled data.

Explore Salinity results:

[72]:
from harmonize_wq import convert
[73]:
# Salinity summary statistics
lst = [x.magnitude for x in list(df['Salinity'].dropna())]
q_sum = sum(lst)
print('Range: {} to {}'.format(min(lst), max(lst)))
print('Results: {} \nMean: {} PSU'.format(len(lst), q_sum/len(lst)))
Range: 0.0 to 37782.0
Results: 68190
Mean: 16.236780567532055 PSU
[74]:
# Identify extreme outliers
[x for x in lst if x >3200]
[74]:
[15030.0, 37782.0]

Other fields like units and QA_flag may help understand what caused high values and what results might need to be dropped from consideration

[75]:
# Columns to focus on
cols = ['ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'QA_flag', 'Salinity']
[76]:
# Look at important fields for max 5 values
salinity_series = df['Salinity'][df['Salinity'].notna()]
salinity_series.sort_values(ascending=False, inplace=True)
df[cols][df['Salinity'].isin(salinity_series[0:5])]
[76]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Salinity
12623 15030 ppt NaN 15030.0 Practical_Salinity_Units
22079 322 ppth NaN 322.0 Practical_Salinity_Units
42633 2150 ppth NaN 2150.0 Practical_Salinity_Units
69507 37782 ppth NaN 37782.0 Practical_Salinity_Units
142665 2190 ppt NaN 2190.0 Practical_Salinity_Units

Detection limits may help understand what caused low values and what results might need to be dropped or updated

[77]:
from harmonize_wq import wrangle
[78]:
df = wrangle.add_detection(df, 'Salinity')
cols+=['ResultDetectionConditionText',
       'DetectionQuantitationLimitTypeName',
       'DetectionQuantitationLimitMeasure/MeasureValue',
       'DetectionQuantitationLimitMeasure/MeasureUnitCode']
[79]:
# Look at important fields for min 5 values (often multiple 0.0)
df[cols][df['Salinity'].isin(salinity_series[-5:])]
[79]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Salinity ResultDetectionConditionText DetectionQuantitationLimitTypeName DetectionQuantitationLimitMeasure/MeasureValue DetectionQuantitationLimitMeasure/MeasureUnitCode
2209 0.00 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
3786 0.00 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
9784 0.0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
18078 0.0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
32610 0.0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
... ... ... ... ... ... ... ... ...
307362 0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
307368 0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
345344 0.0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
345565 0.0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
360962 0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN

2324 rows × 8 columns

Explore Conductivity results:

[80]:
# Create series and inspect Conductivity values
cond_series = df['Conductivity'].dropna()
cond_series
[80]:
8         19204.2 microsiemens / centimeter
50          222.3 microsiemens / centimeter
232         102.8 microsiemens / centimeter
394       11017.5 microsiemens / centimeter
746          32.0 microsiemens / centimeter
                        ...
397047      110.0 microsiemens / centimeter
397054       65.0 microsiemens / centimeter
397055      110.0 microsiemens / centimeter
397058      390.0 microsiemens / centimeter
397061       65.0 microsiemens / centimeter
Name: Conductivity, Length: 1818, dtype: object

Conductivity thresholds from Freshwater Explorer: 10 > x < 5000 us/cm, use a higher threshold for coastal waters

[81]:
# Sort and check other relevant columns before converting (e.g. Salinity)
cols = ['ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'QA_flag', 'Salinity', 'Conductivity']
df.sort_values(by=['Conductivity'], ascending=False, inplace=True)
df.loc[df['Conductivity'].notna(), cols]
[81]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Salinity Conductivity
129171 54886.2 umho/cm NaN NaN 54886.2 microsiemens / centimeter
132518 54871.3 umho/cm NaN NaN 54871.3 microsiemens / centimeter
125816 54860.6 umho/cm NaN NaN 54860.6 microsiemens / centimeter
131249 54859.3 umho/cm NaN NaN 54859.3 microsiemens / centimeter
125215 54850.8 umho/cm NaN NaN 54850.8 microsiemens / centimeter
... ... ... ... ... ...
86435 6.8 umho/cm NaN NaN 6.8 microsiemens / centimeter
51516 2 umho/cm NaN NaN 2.0 microsiemens / centimeter
142803 2 umho/cm NaN NaN 2.0 microsiemens / centimeter
36855 1 umho/cm NaN NaN 1.0 microsiemens / centimeter
143983 .04 umho/cm NaN NaN 0.04 microsiemens / centimeter

1818 rows × 5 columns

[82]:
# Check other relevant columns before converting (e.g. Salinity)
cols = ['ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'QA_flag', 'Salinity', 'Conductivity']
df.loc[df['Conductivity'].notna(), cols]
[82]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Salinity Conductivity
129171 54886.2 umho/cm NaN NaN 54886.2 microsiemens / centimeter
132518 54871.3 umho/cm NaN NaN 54871.3 microsiemens / centimeter
125816 54860.6 umho/cm NaN NaN 54860.6 microsiemens / centimeter
131249 54859.3 umho/cm NaN NaN 54859.3 microsiemens / centimeter
125215 54850.8 umho/cm NaN NaN 54850.8 microsiemens / centimeter
... ... ... ... ... ...
86435 6.8 umho/cm NaN NaN 6.8 microsiemens / centimeter
51516 2 umho/cm NaN NaN 2.0 microsiemens / centimeter
142803 2 umho/cm NaN NaN 2.0 microsiemens / centimeter
36855 1 umho/cm NaN NaN 1.0 microsiemens / centimeter
143983 .04 umho/cm NaN NaN 0.04 microsiemens / centimeter

1818 rows × 5 columns

[83]:
# Convert values to PSU and write to Salinity
cond_series = cond_series.apply(str)  # Convert to string to convert to dimensionless (PSU)
df.loc[df['Conductivity'].notna(), 'Salinity'] = cond_series.apply(convert.conductivity_to_PSU)
df.loc[df['Conductivity'].notna(), 'Salinity']
[83]:
129171    36.356 dimensionless
132518    36.345 dimensionless
125816    36.338 dimensionless
131249    36.336 dimensionless
125215     36.33 dimensionless
                  ...
86435      0.013 dimensionless
51516      0.012 dimensionless
142803     0.012 dimensionless
36855      0.012 dimensionless
143983     0.012 dimensionless
Name: Salinity, Length: 1818, dtype: object

Datetime

datetime() formats time using dataretrieval and ActivityStart

[84]:
# First inspect the existing unformated fields
cols = ['ActivityStartDate', 'ActivityStartTime/Time', 'ActivityStartTime/TimeZoneCode']
df[cols]
[84]:
ActivityStartDate ActivityStartTime/Time ActivityStartTime/TimeZoneCode
129171 2007-08-09 12:15:00 CST
132518 2007-08-09 12:15:00 CST
125816 2007-08-09 12:15:00 CST
131249 2007-08-09 12:15:00 CST
125215 2007-08-09 12:15:00 CST
... ... ... ...
398031 2024-03-13 08:20:00 CDT
398032 2024-03-06 07:45:00 CDT
398033 2024-03-06 07:45:00 CDT
398034 2024-03-13 08:20:00 CDT
398035 2024-03-06 11:30:00 CDT

398036 rows × 3 columns

[85]:
# 'ActivityStartDate' presserves date where 'Activity_datetime' is NAT due to no time zone
df = clean.datetime(df)
df[['ActivityStartDate', 'Activity_datetime']]
/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/dataretrieval/utils.py:87: UserWarning: Warning: 35999 incomplete dates found, consider setting datetime_index to False.
  warnings.warn(
[85]:
ActivityStartDate Activity_datetime
129171 2007-08-09 2007-08-09 18:15:00+00:00
132518 2007-08-09 2007-08-09 18:15:00+00:00
125816 2007-08-09 2007-08-09 18:15:00+00:00
131249 2007-08-09 2007-08-09 18:15:00+00:00
125215 2007-08-09 2007-08-09 18:15:00+00:00
... ... ...
398031 2024-03-13 2024-03-13 13:20:00+00:00
398032 2024-03-06 2024-03-06 12:45:00+00:00
398033 2024-03-06 2024-03-06 12:45:00+00:00
398034 2024-03-13 2024-03-13 13:20:00+00:00
398035 2024-03-06 2024-03-06 16:30:00+00:00

398036 rows × 2 columns

Activity_datetime combines all three time component columns into UTC. If time is missing this is NaT so a ActivityStartDate column is used to preserve date only.

Depth

Note: Data are often lacking sample depth metadata

[86]:
# Depth of sample (default units='meter')
df = clean.harmonize_depth(df)
#df.loc[df['ResultDepthHeightMeasure/MeasureValue'].dropna(), "Depth"]
df['ResultDepthHeightMeasure/MeasureValue'].dropna()
[86]:
1618       7.0
3651       7.0
73415      0.1
73452      2.2
73526      2.0
          ...
82807      2.2
87971      1.0
88441     16.0
88845     16.0
142158    35.0
Name: ResultDepthHeightMeasure/MeasureValue, Length: 179, dtype: float64

Characteristic to Column (long to wide format)

[87]:
# Split single QA column into multiple by characteristic (rename the result to preserve these QA_flags)
df2 = wrangle.split_col(df)
df2
[87]:
OrganizationIdentifier OrganizationFormalName ActivityIdentifier ActivityStartDate ActivityStartTime/Time ActivityStartTime/TimeZoneCode MonitoringLocationIdentifier ResultIdentifier DataLoggerLine ResultDetectionConditionText ... QA_pH QA_Conductivity QA_E_coli QA_DO QA_Turbidity QA_Secchi QA_Chlorophyll QA_Nitrogen QA_Temperature QA_Carbon
129171 21AWIC ALABAMA DEPT. OF ENVIRONMENTAL MANAGEMENT - WA... 21AWIC-51908_230231_173 2007-08-09 12:15:00 -0600 21AWIC-1122 STORET-170383613 230231.0 NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
132518 21AWIC ALABAMA DEPT. OF ENVIRONMENTAL MANAGEMENT - WA... 21AWIC-51908_230230_173 2007-08-09 12:15:00 -0600 21AWIC-1122 STORET-170383607 230230.0 NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
125816 21AWIC ALABAMA DEPT. OF ENVIRONMENTAL MANAGEMENT - WA... 21AWIC-51908_230228_173 2007-08-09 12:15:00 -0600 21AWIC-1122 STORET-170383595 230228.0 NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
131249 21AWIC ALABAMA DEPT. OF ENVIRONMENTAL MANAGEMENT - WA... 21AWIC-51908_230229_173 2007-08-09 12:15:00 -0600 21AWIC-1122 STORET-170383601 230229.0 NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
125215 21AWIC ALABAMA DEPT. OF ENVIRONMENTAL MANAGEMENT - WA... 21AWIC-51908_230227_173 2007-08-09 12:15:00 -0600 21AWIC-1122 STORET-170383589 230227.0 NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
398031 21AWIC ALABAMA DEPT. OF ENVIRONMENTAL MANAGEMENT - WA... 21AWIC-335811_1873104_173 2024-03-13 08:20:00 -0500 21AWIC-9768 STORET-1039487062 1873104.0 NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
398032 21AWIC ALABAMA DEPT. OF ENVIRONMENTAL MANAGEMENT - WA... 21AWIC-335642_1872423_173 2024-03-06 07:45:00 -0500 21AWIC-1208 STORET-1039486410 1872423.0 NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
398033 21AWIC ALABAMA DEPT. OF ENVIRONMENTAL MANAGEMENT - WA... 21AWIC-335642_1872426_173 2024-03-06 07:45:00 -0500 21AWIC-1208 STORET-1039486431 1872426.0 NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
398034 21AWIC ALABAMA DEPT. OF ENVIRONMENTAL MANAGEMENT - WA... 21AWIC-335811_1873106_173 2024-03-13 08:20:00 -0500 21AWIC-9768 STORET-1039487073 1873106.0 NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
398035 21AWIC ALABAMA DEPT. OF ENVIRONMENTAL MANAGEMENT - WA... 21AWIC-335728_1874876_173 2024-03-06 11:30:00 -0500 21AWIC-1152 STORET-1039490686 1874876.0 NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

347782 rows × 117 columns

[88]:
# This expands the single col (QA_flag) out to a number of new columns based on the unique characteristicNames and speciation
print('{} new columns'.format(len(df2.columns) - len(df.columns)))
14 new columns
[89]:
# Note: there are fewer rows because NAN results are also dropped in this step
print('{} fewer rows'.format(len(df)-len(df2)))
50254 fewer rows
[90]:
#Examine Carbon flags from earlier in notebook (note these are empty now because NAN is dropped)
cols = ['ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'Carbon', 'QA_Carbon']
df2.loc[df2['QA_Carbon'].notna(), cols]
[90]:
ResultMeasureValue ResultMeasure/MeasureUnitCode Carbon QA_Carbon

Next the table is divided into the columns of interest (main_df) and characteristic specific metadata (chars_df)

[91]:
# split table into main and characteristics tables
main_df, chars_df = wrangle.split_table(df2)
[92]:
# Columns still in main table
main_df.columns
[92]:
Index(['OrganizationIdentifier', 'OrganizationFormalName',
       'ActivityIdentifier', 'MonitoringLocationIdentifier', 'ProviderName',
       'Secchi', 'Temperature', 'DO', 'pH', 'Salinity', 'Nitrogen',
       'Speciation', 'TOTAL NITROGEN_ MIXED FORMS', 'Conductivity',
       'Chlorophyll', 'Carbon', 'Turbidity', 'Sediment', 'Phosphorus',
       'TP_Phosphorus', 'TDP_Phosphorus', 'Other_Phosphorus', 'Fecal_Coliform',
       'E_coli', 'DetectionQuantitationLimitTypeName',
       'DetectionQuantitationLimitMeasure/MeasureValue',
       'DetectionQuantitationLimitMeasure/MeasureUnitCode',
       'Activity_datetime', 'Depth', 'QA_TP_Phosphorus', 'QA_TDP_Phosphorus',
       'QA_Other_Phosphorus', 'QA_Salinity', 'QA_Fecal_Coliform', 'QA_pH',
       'QA_Conductivity', 'QA_E_coli', 'QA_DO', 'QA_Turbidity', 'QA_Secchi',
       'QA_Chlorophyll', 'QA_Nitrogen', 'QA_Temperature', 'QA_Carbon'],
      dtype='object')
[93]:
# look at main table results (first 5)
main_df.head()
[93]:
OrganizationIdentifier OrganizationFormalName ActivityIdentifier MonitoringLocationIdentifier ProviderName Secchi Temperature DO pH Salinity ... QA_pH QA_Conductivity QA_E_coli QA_DO QA_Turbidity QA_Secchi QA_Chlorophyll QA_Nitrogen QA_Temperature QA_Carbon
129171 21AWIC ALABAMA DEPT. OF ENVIRONMENTAL MANAGEMENT - WA... 21AWIC-51908_230231_173 21AWIC-1122 STORET NaN NaN NaN NaN 36.356 dimensionless ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
132518 21AWIC ALABAMA DEPT. OF ENVIRONMENTAL MANAGEMENT - WA... 21AWIC-51908_230230_173 21AWIC-1122 STORET NaN NaN NaN NaN 36.345 dimensionless ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
125816 21AWIC ALABAMA DEPT. OF ENVIRONMENTAL MANAGEMENT - WA... 21AWIC-51908_230228_173 21AWIC-1122 STORET NaN NaN NaN NaN 36.338 dimensionless ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
131249 21AWIC ALABAMA DEPT. OF ENVIRONMENTAL MANAGEMENT - WA... 21AWIC-51908_230229_173 21AWIC-1122 STORET NaN NaN NaN NaN 36.336 dimensionless ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
125215 21AWIC ALABAMA DEPT. OF ENVIRONMENTAL MANAGEMENT - WA... 21AWIC-51908_230227_173 21AWIC-1122 STORET NaN NaN NaN NaN 36.33 dimensionless ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

5 rows × 44 columns

[94]:
# Empty columns that could be dropped (Mostly QA columns)
cols = list(main_df.columns)
x = main_df.dropna(axis=1, how='all')
[col for col in cols if col not in x.columns]
[94]:
['Sediment',
 'QA_TP_Phosphorus',
 'QA_TDP_Phosphorus',
 'QA_Other_Phosphorus',
 'QA_Fecal_Coliform',
 'QA_Conductivity',
 'QA_E_coli',
 'QA_Secchi',
 'QA_Carbon']
[95]:
# Map average results at each station
gdf_avg = visualize.map_measure(main_df, stations_clipped, 'Temperature')
gdf_avg.plot(column='mean', cmap='OrRd', legend=True)
[95]:
<Axes: >
../_images/notebooks_Harmonize_Pensacola_Detailed_146_1.png