Tampa Bay, FL - Detailed step-by-step

Standardize, clean and wrangle Water Quality Portal data in Tampa Bay, FL into more analytic-ready formats using the harmonize_wq package

US EPA’s Water Quality Portal (WQP) aggregates water quality, biological, and physical data provided by many organizations and has become an essential resource with tools to query and retrieval data using python or R. Given the variety of data and variety of data originators, using the data in analysis often requires data cleaning to ensure it meets the required quality standards and data wrangling to get it in a more analytic-ready format. Recognizing the definition of analysis-ready varies depending on the analysis, the harmonixe_wq package is intended to be a flexible water quality specific framework to help:

  • Identify differences in data units (including speciation and basis)

  • Identify differences in sampling or analytic methods

  • Resolve data errors using transparent assumptions

  • Reduce data to the columns that are most commonly needed

  • Transform data from long to wide format

Domain experts must decide what data meets their quality standards for data comparability and any thresholds for acceptance or rejection.

Detailed step-by-step workflow

This example workflow takes a deeper dive into some of the expanded functionality to examine results for different water quality parameters in Tampa Bay, FL

Install and import the required libraries

[1]:
import sys
#!python -m pip uninstall harmonize-wq --yes
# Use pip to install the package from pypi or the latest from github
#!{sys.executable} -m pip install harmonize-wq
# For latest dev version
#!{sys.executable} -m pip install git+https://github.com/USEPA/harmonize-wq.git@new_release_0-3-8
[2]:
import dataretrieval.wqp as wqp
from harmonize_wq import wrangle
from harmonize_wq import location
from harmonize_wq import harmonize
from harmonize_wq import visualize
from harmonize_wq import clean
/opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages/dataretrieval/nadp.py:44: UserWarning: GDAL not installed. Some functions will not work.
  warnings.warn('GDAL not installed. Some functions will not work.')

Download location data using dataretrieval

[3]:
# Read geometry for Area of Interest from geojson file url and plot
aoi_url = r'https://github.com/USEPA/Coastal_Ecological_Indicators/raw/master/DGGS_Coastal/temperature_data/TampaBay.geojson'
# geoJSON should be WGS1984 standard, but this one isn't
aoi_gdf = wrangle.as_gdf(aoi_url).to_crs(epsg=4326)
aoi_gdf.plot()
[3]:
<Axes: >
../_images/notebooks_Harmonize_Tampa_Detailed_9_1.png
[4]:
# Build query with characteristicNames and the AOI extent
query = {'characteristicName': ['Phosphorus',
                                'Temperature, water',
                                'Depth, Secchi disk depth',
                                'Dissolved oxygen (DO)',
                                'Salinity',
                                'pH',
                                'Nitrogen',
                                'Conductivity',
                                'Organic carbon',
                                'Chlorophyll a',
                                'Turbidity',
                                'Sediment',
                                'Fecal Coliform',
                                'Escherichia coli']}
query['bBox'] =wrangle.get_bounding_box(aoi_gdf)
[5]:
# Query stations (can be slow)
stations, site_md = wqp.what_sites(**query)
[6]:
# Rows and columns for results
stations.shape
[6]:
(16226, 37)
[7]:
# First 5 rows
stations.head()
[7]:
OrganizationIdentifier OrganizationFormalName MonitoringLocationIdentifier MonitoringLocationName MonitoringLocationTypeName MonitoringLocationDescriptionText HUCEightDigitCode DrainageAreaMeasure/MeasureValue DrainageAreaMeasure/MeasureUnitCode ContributingDrainageAreaMeasure/MeasureValue ... AquiferName LocalAqfrName FormationTypeText AquiferTypeName ConstructionDateText WellDepthMeasure/MeasureValue WellDepthMeasure/MeasureUnitCode WellHoleDepthMeasure/MeasureValue WellHoleDepthMeasure/MeasureUnitCode ProviderName
0 USGS-FL USGS Florida Water Science Center USGS-02300009 MANATEE RIVER AT DEVILS ELBOW NEAR FT HAMER FL Estuary NaN 3100202.0 139.0 sq mi NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NWIS
1 USGS-FL USGS Florida Water Science Center USGS-02300018 GAMBLE CREEK NEAR PARRISH FL Stream NaN 3100202.0 50.6 sq mi NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NWIS
2 USGS-FL USGS Florida Water Science Center USGS-02300021 MANATEE RIVER AT FORT HAMER FL Estuary NaN 3100202.0 216.0 sq mi NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NWIS
3 USGS-FL USGS Florida Water Science Center USGS-02300062 GLEN CREEK NEAR BRADENTON FL Stream NaN 3100202.0 2.5 sq mi NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NWIS
4 USGS-FL USGS Florida Water Science Center USGS-02300064 BRADEN RIVER AT BRADENTON FL Stream NaN 3100202.0 83.0 sq mi NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NWIS

5 rows × 37 columns

[8]:
# Columns used for an example row
stations.iloc[0][['HorizontalCoordinateReferenceSystemDatumName', 'LatitudeMeasure', 'LongitudeMeasure']]
[8]:
HorizontalCoordinateReferenceSystemDatumName        NAD83
LatitudeMeasure                                 27.520872
LongitudeMeasure                                -82.40176
Name: 0, dtype: object
[9]:
# Harmonize location datums to 4326 (Note we keep intermediate columns using intermediate_columns=True)
stations_gdf = location.harmonize_locations(stations, outEPSG=4326, intermediate_columns=True)
[10]:
# Every function has a dostring to help understand input/output and what it does
location.harmonize_locations?
[11]:
# Rows and columns for results after running the function (5 new columns, only 2 new if intermediate_columns=False)
stations_gdf.shape
[11]:
(16226, 42)
[12]:
# Example results for the new columns
stations_gdf.iloc[0][['geom_orig', 'EPSG', 'QA_flag', 'geom', 'geometry']]
[12]:
geom_orig         (-82.4017604, 27.5208719)
EPSG                                 4269.0
QA_flag                                 NaN
geom         POINT (-82.4017604 27.5208719)
geometry     POINT (-82.4017604 27.5208719)
Name: 0, dtype: object
[13]:
# geom and geometry look the same but geometry is a special datatype
stations_gdf['geometry'].dtype
[13]:
<geopandas.array.GeometryDtype at 0x7f7efa582210>
[14]:
# Look at the different QA_flag flags that have been assigned,
# e.g., for bad datums or limited decimal precision
set(stations_gdf.loc[stations_gdf['QA_flag'].notna()]['QA_flag'])
[14]:
{'HorizontalCoordinateReferenceSystemDatumName: Bad datum OTHER, EPSG:4326 assumed',
 'HorizontalCoordinateReferenceSystemDatumName: Bad datum UNKWN, EPSG:4326 assumed',
 'LatitudeMeasure: Imprecise: lessthan3decimaldigits',
 'LatitudeMeasure: Imprecise: lessthan3decimaldigits; HorizontalCoordinateReferenceSystemDatumName: Bad datum UNKWN, EPSG:4326 assumed',
 'LatitudeMeasure: Imprecise: lessthan3decimaldigits; LongitudeMeasure: Imprecise: lessthan3decimaldigits',
 'LongitudeMeasure: Imprecise: lessthan3decimaldigits',
 'LongitudeMeasure: Imprecise: lessthan3decimaldigits; HorizontalCoordinateReferenceSystemDatumName: Bad datum OTHER, EPSG:4326 assumed'}
[15]:
# Map it
stations_gdf.plot()
[15]:
<Axes: >
../_images/notebooks_Harmonize_Tampa_Detailed_21_1.png
[16]:
# Clip it to area of interest
stations_clipped = wrangle.clip_stations(stations_gdf, aoi_gdf)
[17]:
# Map it
stations_clipped.plot()
[17]:
<Axes: >
../_images/notebooks_Harmonize_Tampa_Detailed_23_1.png
[18]:
# How many stations now?
len(stations_clipped)
[18]:
10720
[19]:
# To save the results to a shapefile
#import os
#path = ''  #specify the path (folder/directory) to save it to
#stations_clipped.to_file(os.path.join(path, 'Tampa_stations.shp'))

Retrieve Characteristic Data

[20]:
# Now query for results
query['dataProfile'] = 'narrowResult'
res_narrow, md_narrow = wqp.get_results(**query)
/opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages/dataretrieval/wqp.py:83: DtypeWarning: Columns (9,10,13,15,17,19,22,23,28,31,32,33,36,38,58,60,61,63,64,65,70,71,73) have mixed types. Specify dtype option on import or set low_memory=False.
  df = pd.read_csv(StringIO(response.text), delimiter=',')
[21]:
df = res_narrow
df
[21]:
OrganizationIdentifier OrganizationFormalName ActivityIdentifier ActivityStartDate ActivityStartTime/Time ActivityStartTime/TimeZoneCode MonitoringLocationIdentifier ResultIdentifier DataLoggerLine ResultDetectionConditionText ... AnalysisEndTime/TimeZoneCode ResultLaboratoryCommentCode ResultLaboratoryCommentText ResultDetectionQuantitationLimitUrl LaboratoryAccreditationIndicator LaboratoryAccreditationAuthorityName TaxonomistAccreditationIndicator TaxonomistAccreditationAuthorityName LabSamplePreparationUrl ProviderName
0 21FLHILL_WQX Environmental Protection Commission of Hillsbo... 21FLHILL_WQX-130612585-W 2013-06-12 11:01:00 EST 21FLHILL_WQX-585 STORET-301235413 NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN STORET
1 21FLSEAS_WQX Florida Department of Environmental Protection 21FLSEAS_WQX-481901119134 2013-11-19 14:01:00 EST 21FLSEAS_WQX-48SEAS190 STORET-310535134 NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN STORET
2 21FLHILL_WQX Environmental Protection Commission of Hillsbo... 21FLHILL_WQX-130702047-M 2013-07-02 11:01:00 EST 21FLHILL_WQX-047 STORET-300620295 NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN STORET
3 21FLHILL_WQX Environmental Protection Commission of Hillsbo... 21FLHILL_WQX-130716021 2013-07-16 11:01:00 EST 21FLHILL_WQX-021 STORET-300666279 NaN NaN ... NaN NaN NaN https://www.waterqualitydata.us/data/providers... NaN NaN NaN NaN NaN STORET
4 21FLHILL_WQX Environmental Protection Commission of Hillsbo... 21FLHILL_WQX-131216112-M 2013-12-16 12:01:00 EST 21FLHILL_WQX-112 STORET-301229196 NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN STORET
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
1475274 USGS-FL USGS Florida Water Science Center nwisfl.01.95500762 1955-04-08 NaN NaN USGS-273926082304501 NWIS-6842541 NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NWIS
1475275 USGS-FL USGS Florida Water Science Center nwisfl.01.95500762 1955-04-08 NaN NaN USGS-273926082304501 NWIS-6842544 NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NWIS
1475276 USGS-FL USGS Florida Water Science Center nwisfl.01.95800924 1957-10-21 14:05:00 EST USGS-02306001 NWIS-6894410 NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NWIS
1475277 USGS-FL USGS Florida Water Science Center nwisfl.01.95500782 1955-04-08 NaN NaN USGS-274455082253601 NWIS-6842941 NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NWIS
1475278 USGS-FL USGS Florida Water Science Center nwisfl.01.95500782 1955-04-08 NaN NaN USGS-274455082253601 NWIS-6842944 NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NWIS

1475279 rows × 78 columns

[22]:
# Map number of usable results at each station
gdf_count = visualize.map_counts(df, stations_clipped)
legend_kwds = {"fmt": "{:.0f}", 'bbox_to_anchor':(1, 0.75)}
gdf_count.plot(column='cnt', cmap='Blues', legend=True, scheme='quantiles', legend_kwds=legend_kwds)
[22]:
<Axes: >
../_images/notebooks_Harmonize_Tampa_Detailed_29_1.png

Harmonize Characteristic Results

Two options for functions to harmonize characteristics: harmonize_all() or harmonize(). harmonize_all runs functions on all characteristics and lets you specify how to handle errors harmonize runs functions only on the characteristic specified with char_val and lets you also choose output units, to keep intermediate columns and to do a quick report summarizing changes.

[23]:
# See Documentation
#harmonize.harmonize_all?
#harmonize.harmonize?

secchi disk depth

[24]:
# Each harmonize function has optional params, e.g., char_val is the characticName column value to use so we can send the entire df.
# Optional params: units='m', char_val='Depth, Secchi disk depth', out_col='Secchi', report=False)

# We start by demonstrating on secchi disk depth (units default to m, keep intermediate fields, see report)
df = harmonize.harmonize(df, 'Depth, Secchi disk depth', intermediate_columns=True, report=True)
/opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages/harmonize_wq/wq_data.py:395: UserWarning: WARNING: 'None' UNDEFINED UNIT for Secchi
  warn("WARNING: " + problem)
-Usable results-
count    87241.000000
mean         1.469177
std          0.902037
min         -9.000000
25%          0.900000
50%          1.300000
75%          1.900000
max         32.004000
dtype: float64
Unusable results: 219
Usable results with inferred units: 0
Results outside threshold (0.0 to 6.881397411106354): 48
../_images/notebooks_Harmonize_Tampa_Detailed_34_2.png

The threshold is based on standard deviations and is currently only used in the histogram.

[25]:
# Look at a table of just Secchi results and focus on subset of columns
cols = ['MonitoringLocationIdentifier', 'ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'QA_flag', 'Units']
sechi_results = df.loc[df['CharacteristicName']=='Depth, Secchi disk depth', cols + ['Secchi']]
sechi_results
[25]:
MonitoringLocationIdentifier ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Units Secchi
36 21FLHILL_WQX-1510 0.80 m NaN m 0.8 meter
68 21FLMANA_WQX-428 2.2 m NaN m 2.2 meter
96 21FLHILL_WQX-096 2.70 m NaN m 2.7 meter
106 21FLHILL_WQX-064 0.80 m NaN m 0.8 meter
127 21FLCOSP_WQX-COSPE6-2 1.7 m NaN m 1.7 meter
... ... ... ... ... ... ...
1474925 21FLPDEM_WQX-W8-B-24-01 3.1 m NaN m 3.1 meter
1474932 21FLPDEM_WQX-W7-B-24-02 1.6 m NaN m 1.6 meter
1474935 21FLPDEM_WQX-W7-B-24-01 3.128 m NaN m 3.128 meter
1474976 21FLTPA_WQX-G1SW0136 0.5 m NaN m 0.5 meter
1474980 21FLTPA_WQX-G1SW0129 0.4 m NaN m 0.4 meter

87460 rows × 6 columns

[26]:
# Look at unusable(NAN) results
sechi_results.loc[df['Secchi'].isna()]
[26]:
MonitoringLocationIdentifier ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Units Secchi
734900 21FLPDEM_WQX-14-02 Not Reported m ResultMeasureValue: "Not Reported" result cann... m NaN
739786 21FLKWAT_WQX-HIL-RAINBOW-1 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... m NaN
743105 21FLKWAT_WQX-PIN-COFFEEPOBAYOU-8 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... m NaN
745032 21FLKWAT_WQX-PIN-COFFEEPOBAYOU-6 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... m NaN
746511 21FLPDEM_WQX-E2-D-19-02 Not Reported m ResultMeasureValue: "Not Reported" result cann... m NaN
... ... ... ... ... ... ...
1460090 USGS-273631082452600 NaN NaN ResultMeasureValue: missing (NaN) result; Resu... m NaN
1460418 USGS-275100082280500 NaN NaN ResultMeasureValue: missing (NaN) result; Resu... m NaN
1460423 USGS-275100082280500 NaN NaN ResultMeasureValue: missing (NaN) result; Resu... m NaN
1460626 USGS-275530082383300 NaN NaN ResultMeasureValue: missing (NaN) result; Resu... m NaN
1460866 USGS-275530082383300 NaN NaN ResultMeasureValue: missing (NaN) result; Resu... m NaN

219 rows × 6 columns

[27]:
# look at the QA flag for first row from above
list(sechi_results.loc[df['Secchi'].isna()]['QA_flag'])[0]
[27]:
'ResultMeasureValue: "Not Reported" result cannot be used'
[28]:
# All cases where there was a QA flag
sechi_results.loc[df['QA_flag'].notna()]
[28]:
MonitoringLocationIdentifier ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Units Secchi
244340 NARS_WQX-NCCA10-1674 -9 None ResultMeasure/MeasureUnitCode: 'None' UNDEFINE... m -9.0 meter
734900 21FLPDEM_WQX-14-02 Not Reported m ResultMeasureValue: "Not Reported" result cann... m NaN
739786 21FLKWAT_WQX-HIL-RAINBOW-1 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... m NaN
743105 21FLKWAT_WQX-PIN-COFFEEPOBAYOU-8 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... m NaN
745032 21FLKWAT_WQX-PIN-COFFEEPOBAYOU-6 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... m NaN
... ... ... ... ... ... ...
1460090 USGS-273631082452600 NaN NaN ResultMeasureValue: missing (NaN) result; Resu... m NaN
1460418 USGS-275100082280500 NaN NaN ResultMeasureValue: missing (NaN) result; Resu... m NaN
1460423 USGS-275100082280500 NaN NaN ResultMeasureValue: missing (NaN) result; Resu... m NaN
1460626 USGS-275530082383300 NaN NaN ResultMeasureValue: missing (NaN) result; Resu... m NaN
1460866 USGS-275530082383300 NaN NaN ResultMeasureValue: missing (NaN) result; Resu... m NaN

220 rows × 6 columns

If both value and unit are missing nothing can be done, a unitless (NaN) value is assumed as to be in default units but a QA_flag is added

[29]:
# Aggregate secchi data by station
visualize.station_summary(sechi_results, 'Secchi')
[29]:
MonitoringLocationIdentifier cnt mean
0 21FLBRA-1530-A 2 0.375000
1 21FLBRA-1541B-A 3 1.166667
2 21FLBRA-1574-A 1 0.250000
3 21FLBRA-1574A-A 2 0.250000
4 21FLBRA-1574A-B 1 1.250000
... ... ... ...
11832 USGS-280630082350900 3 1.966667
11833 USGS-280635082322100 2 2.100000
11834 USGS-280640082434700 3 2.302933
11835 USGS-280719082291400 2 1.000000
11836 USGS-280730082431800 3 1.947333

11837 rows × 3 columns

[30]:
# Map number of usable results at each station
gdf_count = visualize.map_counts(sechi_results, stations_clipped)
gdf_count.plot(column='cnt', cmap='Blues', legend=True, scheme='quantiles', legend_kwds=legend_kwds)
/opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages/mapclassify/classifiers.py:1653: UserWarning: Not enough unique values in array to form 5 classes. Setting k to 2.
  self.bins = quantile(y, k=k)
[30]:
<Axes: >
../_images/notebooks_Harmonize_Tampa_Detailed_42_2.png
[31]:
# Map average results at each station
gdf_avg = visualize.map_measure(sechi_results, stations_clipped, 'Secchi')
gdf_avg.plot(column='mean', cmap='OrRd', legend=True)
[31]:
<Axes: >
../_images/notebooks_Harmonize_Tampa_Detailed_43_1.png

Temperature

The default error=’raise’, makes it so that there is an error when there is a dimensionality error (i.e. when units can’t be converted). Here we would get the error: DimensionalityError: Cannot convert from ‘count’ (dimensionless) to ‘degree_Celsius’ ([temperature])

[32]:
#'Temperature, water'
# Note: Default errors='raise'
df = harmonize.harmonize(df, 'Temperature, water', intermediate_columns=True, report=True)
-Usable results-
count    301964.000000
mean         25.302932
std          79.645591
min          -2.900000
25%          21.210000
50%          25.900000
75%          29.200000
max       43696.000000
dtype: float64
Unusable results: 166
Usable results with inferred units: 0
Results outside threshold (0.0 to 503.176478477458): 2
../_images/notebooks_Harmonize_Tampa_Detailed_46_1.png
[33]:
# Look at what was changed
cols = ['MonitoringLocationIdentifier', 'ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'QA_flag', 'Temperature', 'Units']
temperature_results = df.loc[df['CharacteristicName']=='Temperature, water', cols]
temperature_results
[33]:
MonitoringLocationIdentifier ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Temperature Units
2 21FLHILL_WQX-047 28.19 deg C NaN 28.19 degree_Celsius degC
9 21FLTBW_WQX-M23 29.52 deg C NaN 29.52 degree_Celsius degC
14 21FLMANA_WQX-GA1 21 deg C NaN 21.0 degree_Celsius degC
34 21FLHILL_WQX-1509 27.67 deg C NaN 27.67 degree_Celsius degC
37 21FLTBW_WQX-PR103026 17.73 deg C NaN 17.73 degree_Celsius degC
... ... ... ... ... ... ...
1475263 USGS-273217082335701 28.9 deg C NaN 28.9 degree_Celsius degC
1475266 USGS-274322082245501 24.4 deg C NaN 24.4 degree_Celsius degC
1475271 USGS-274302082280801 25.0 deg C NaN 25.0 degree_Celsius degC
1475274 USGS-273926082304501 25.7 deg C NaN 25.7 degree_Celsius degC
1475277 USGS-274455082253601 26.1 deg C NaN 26.1 degree_Celsius degC

302130 rows × 6 columns

In the above we can see examples where the results were in deg F and in the result field they’ve been converted into degree_Celsius

[34]:
# Examine missing units
temperature_results.loc[df['ResultMeasure/MeasureUnitCode'].isna()]
[34]:
MonitoringLocationIdentifier ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Temperature Units
739028 21FLPDEM_WQX-19-13 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... NaN degC
740113 21FLPDEM_WQX-24-07 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... NaN degC
741546 21FLPDEM_WQX-12-04 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... NaN degC
746594 21FLPDEM_WQX-23-08 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... NaN degC
752680 21FLPDEM_WQX-04-04 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... NaN degC
... ... ... ... ... ... ...
893028 21FLPDEM_WQX-35-01 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... NaN degC
896706 21FLPDEM_WQX-23-08 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... NaN degC
1362248 USGS-280228082343000 NaN NaN ResultMeasureValue: missing (NaN) result; Resu... NaN degC
1444305 USGS-02306028 NaN NaN ResultMeasureValue: missing (NaN) result; Resu... NaN degC
1444588 USGS-02306028 NaN NaN ResultMeasureValue: missing (NaN) result; Resu... NaN degC

87 rows × 6 columns

We can see where the units were missing, the results were assumed to be in degree_Celsius already

[35]:
# This is also noted in the QA_flag field
list(temperature_results.loc[df['ResultMeasure/MeasureUnitCode'].isna(), 'QA_flag'])[0]
[35]:
'ResultMeasureValue: "Not Reported" result cannot be used; ResultMeasure/MeasureUnitCode: MISSING UNITS, degC assumed'
[36]:
# Look for any without usable results
temperature_results.loc[df['Temperature'].isna()]
[36]:
MonitoringLocationIdentifier ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Temperature Units
739028 21FLPDEM_WQX-19-13 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... NaN degC
740113 21FLPDEM_WQX-24-07 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... NaN degC
741546 21FLPDEM_WQX-12-04 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... NaN degC
746594 21FLPDEM_WQX-23-08 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... NaN degC
752680 21FLPDEM_WQX-04-04 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... NaN degC
... ... ... ... ... ... ...
1418840 21FLPDEM_WQX-12-02 Not Reported deg C ResultMeasureValue: "Not Reported" result cann... NaN degC
1444305 USGS-02306028 NaN NaN ResultMeasureValue: missing (NaN) result; Resu... NaN degC
1444588 USGS-02306028 NaN NaN ResultMeasureValue: missing (NaN) result; Resu... NaN degC
1474642 21FLPDEM_WQX-24-01 Not Reported deg C ResultMeasureValue: "Not Reported" result cann... NaN degC
1474729 21FLPDEM_WQX-04-04 Not Reported deg C ResultMeasureValue: "Not Reported" result cann... NaN degC

166 rows × 6 columns

[37]:
# Aggregate temperature data by station
visualize.station_summary(temperature_results, 'Temperature')
[37]:
MonitoringLocationIdentifier cnt mean
0 21FLBRA-1530-A 12 27.593333
1 21FLBRA-1530-B 7 26.290000
2 21FLBRA-1541A-A 6 26.016667
3 21FLBRA-1541B-A 6 26.743333
4 21FLBRA-1574-A 5 27.890000
... ... ... ...
15037 USGS-280726082313300 4 28.025000
15038 USGS-280728082301101 54 25.083333
15039 USGS-280729082313501 1 27.400000
15040 USGS-280730082313201 1 24.700000
15041 USGS-280730082431800 11 22.018182

15042 rows × 3 columns

[38]:
# Map number of usable results at each station
gdf_count = visualize.map_counts(temperature_results, stations_clipped)
gdf_count.plot(column='cnt', cmap='Blues', legend=True, scheme='quantiles', legend_kwds=legend_kwds)
/opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages/mapclassify/classifiers.py:1653: UserWarning: Not enough unique values in array to form 5 classes. Setting k to 4.
  self.bins = quantile(y, k=k)
[38]:
<Axes: >
../_images/notebooks_Harmonize_Tampa_Detailed_54_2.png
[39]:
# Map average results at each station
gdf_avg = visualize.map_measure(temperature_results, stations_clipped, 'Temperature')
gdf_avg.plot(column='mean', cmap='OrRd', legend=True)
[39]:
<Axes: >
../_images/notebooks_Harmonize_Tampa_Detailed_55_1.png

Dissolved oxygen

[40]:
# look at Dissolved oxygen (DO), but this time without intermediate fields
df = harmonize.harmonize(df, 'Dissolved oxygen (DO)')

Note: Imediately when we run a harmonization function without the intermediate fields they’re deleted.

[41]:
# Look at what was changed
cols = ['MonitoringLocationIdentifier', 'ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'QA_flag', 'DO']
do_res = df.loc[df['CharacteristicName']=='Dissolved oxygen (DO)', cols]
do_res
[41]:
MonitoringLocationIdentifier ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag DO
0 21FLHILL_WQX-585 9.32 mg/L NaN 9.32 milligram / liter
10 21FLHILL_WQX-1606 8.08 mg/L NaN 8.08 milligram / liter
12 21FLHILL_WQX-1611 4.90 mg/L NaN 4.9 milligram / liter
16 21FLHILL_WQX-1606 2.56 mg/L NaN 2.56 milligram / liter
19 21FLPDEM_WQX-24-01 68.7 % NaN 0.05676222371166 milligram / liter
... ... ... ... ... ...
1474946 21FLPDEM_WQX-14-02 8.16 mg/L NaN 8.16 milligram / liter
1474956 21FLTPA_WQX-G2SW0138 0.49 mg/L NaN 0.49 milligram / liter
1474961 21FLTPA_WQX-G1SW0126 10.15 mg/L NaN 10.15 milligram / liter
1474977 21FLHESD_WQX-BEAUDETTE POND OUTLET 8.40 mg/L NaN 8.4 milligram / liter
1474979 21FLTPA_WQX-G1SW0071 8.48 mg/L NaN 8.48 milligram / liter

271522 rows × 5 columns

[42]:
do_res.loc[do_res['ResultMeasure/MeasureUnitCode']!='mg/l']
[42]:
MonitoringLocationIdentifier ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag DO
0 21FLHILL_WQX-585 9.32 mg/L NaN 9.32 milligram / liter
10 21FLHILL_WQX-1606 8.08 mg/L NaN 8.08 milligram / liter
12 21FLHILL_WQX-1611 4.90 mg/L NaN 4.9 milligram / liter
16 21FLHILL_WQX-1606 2.56 mg/L NaN 2.56 milligram / liter
19 21FLPDEM_WQX-24-01 68.7 % NaN 0.05676222371166 milligram / liter
... ... ... ... ... ...
1474946 21FLPDEM_WQX-14-02 8.16 mg/L NaN 8.16 milligram / liter
1474956 21FLTPA_WQX-G2SW0138 0.49 mg/L NaN 0.49 milligram / liter
1474961 21FLTPA_WQX-G1SW0126 10.15 mg/L NaN 10.15 milligram / liter
1474977 21FLHESD_WQX-BEAUDETTE POND OUTLET 8.40 mg/L NaN 8.4 milligram / liter
1474979 21FLTPA_WQX-G1SW0071 8.48 mg/L NaN 8.48 milligram / liter

174533 rows × 5 columns

Though there were no results in %, the conversion from percent saturation (%) to mg/l is special. This equation is being improved by integrating tempertaure and pressure instead of assuming STP (see DO_saturation())

[43]:
# Aggregate data by station
visualize.station_summary(do_res, 'DO')
[43]:
MonitoringLocationIdentifier cnt mean
0 21FLBRA-1530-A 12 2.785000
1 21FLBRA-1530-B 7 4.042857
2 21FLBRA-1541A-A 6 4.721667
3 21FLBRA-1541B-A 6 6.600000
4 21FLBRA-1574-A 5 4.378000
... ... ... ...
13610 NARS_WQX-NCCA10-1672 8 5.437500
13611 NARS_WQX-NCCA10-1673 20 4.115000
13612 NARS_WQX-NCCA10-1674 6 2.466667
13613 NARS_WQX-NLA06608-0161 5 6.500000
13614 NARS_WQX-NLA_FL-10127 3 9.033333

13615 rows × 3 columns

[44]:
# Map number of usable results at each station
gdf_count = visualize.map_counts(do_res, stations_clipped)
gdf_count.plot(column='cnt', cmap='Blues', legend=True, scheme='quantiles', legend_kwds=legend_kwds)
/opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages/mapclassify/classifiers.py:1653: UserWarning: Not enough unique values in array to form 5 classes. Setting k to 4.
  self.bins = quantile(y, k=k)
[44]:
<Axes: >
../_images/notebooks_Harmonize_Tampa_Detailed_63_2.png
[45]:
# Map average results at each station
gdf_avg = visualize.map_measure(do_res, stations_clipped, 'DO')
gdf_avg.plot(column='mean', cmap='OrRd', legend=True)
[45]:
<Axes: >
../_images/notebooks_Harmonize_Tampa_Detailed_64_1.png

pH

[46]:
# pH, this time looking at a report
df = harmonize.harmonize(df, 'pH', report=True)
-Usable results-
count    278289.000000
mean          7.762995
std           0.472536
min           0.370000
25%           7.520000
50%           7.898646
75%           8.070000
max          12.970000
dtype: float64
Unusable results: 186
Usable results with inferred units: 0
Results outside threshold (0.0 to 10.598211492474329): 7
../_images/notebooks_Harmonize_Tampa_Detailed_66_1.png

Note the warnings that occur when a unit is not recognized by the package. These occur even when report=False. Future versions could include these as defined units for pH, but here it wouldn’t alter results.

[47]:
df.loc[df['CharacteristicName']=='pH', ['ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'QA_flag', 'pH']]
[47]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag pH
4 7.48 None NaN 7.48 dimensionless
5 8.18 None NaN 8.18 dimensionless
7 7.81 None NaN 7.81 dimensionless
11 7.96 None NaN 7.96 dimensionless
17 7.92 None NaN 7.92 dimensionless
... ... ... ... ...
1475272 7.9 std units NaN 7.9 dimensionless
1475273 7.3 std units NaN 7.3 dimensionless
1475275 7.8 std units NaN 7.8 dimensionless
1475276 7.7 std units NaN 7.7 dimensionless
1475278 7.6 std units NaN 7.6 dimensionless

278475 rows × 4 columns

‘None’ is uninterpretable and replaced with NaN, which then gets replaced with ‘dimensionless’ since pH is unitless

Salinity

[48]:
# Salinity
df = harmonize.harmonize(df, 'Salinity', report=True, errors='ignore')
-Usable results-
count    269049.000000
mean         21.708380
std          95.024786
min          -0.020000
25%          18.060000
50%          24.900000
75%          28.650000
max       48930.000000
dtype: float64
Unusable results: 1265
Usable results with inferred units: 0
Results outside threshold (0.0 to 591.8570961272843): 4
../_images/notebooks_Harmonize_Tampa_Detailed_71_1.png
[49]:
cols = ['ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'QA_flag', 'Salinity']
df.loc[df['CharacteristicName']=='Salinity', cols]
[49]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Salinity
1 40 ppth NaN 40.0 Practical_Salinity_Units
6 29 PSS NaN 29.0 Practical_Salinity_Units
8 26.04 PSS NaN 26.04 Practical_Salinity_Units
21 0.18 ppth NaN 0.18 Practical_Salinity_Units
23 5.9 ppth NaN 5.9 Practical_Salinity_Units
... ... ... ... ...
1474954 0.37 ppth NaN 0.37 Practical_Salinity_Units
1474965 34.41 ppth NaN 34.41 Practical_Salinity_Units
1474968 18.14 ppth NaN 18.14 Practical_Salinity_Units
1474970 0.56 ppth NaN 0.56 Practical_Salinity_Units
1474972 0.26 ppth NaN 0.26 Practical_Salinity_Units

270314 rows × 4 columns

Nitrogen

[50]:
# Nitrogen
df = harmonize.harmonize(df, 'Nitrogen', report=True)
-Usable results-
count    163.000000
mean       1.575389
std        4.532429
min        0.024000
25%        0.202720
50%        0.315560
75%        0.500170
max       22.500000
dtype: float64
Unusable results: 2
Usable results with inferred units: 0
Results outside threshold (0.0 to 28.769965070579055): 0
../_images/notebooks_Harmonize_Tampa_Detailed_74_1.png
[51]:
cols = ['ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'QA_flag', 'Nitrogen']
df.loc[df['CharacteristicName']=='Nitrogen', cols]
[51]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Nitrogen
221551 0.39 mg/L NaN 0.39 milligram / liter
237684 0.4475 mg/L NaN 0.4475 milligram / liter
240477 0.425 mg/L NaN 0.425 milligram / liter
254309 0.4625 mg/L NaN 0.4625 milligram / liter
255698 0.33625 mg/L NaN 0.33625 milligram / liter
... ... ... ... ...
1472938 0.084 mg/l NaN 0.084 milligram / liter
1472946 0.166 mg/l NaN 0.166 milligram / liter
1472956 0.091 mg/l NaN 0.091 milligram / liter
1472990 0.057 mg/l NaN 0.057 milligram / liter
1473145 0.030 mg/l NaN 0.03 milligram / liter

165 rows × 4 columns

Conductivity

[52]:
# Conductivity
df = harmonize.harmonize(df, 'Conductivity', report=True)
-Usable results-
count       11.000000
mean      2503.363636
std       5969.279978
min        606.000000
25%        629.500000
50%        775.000000
75%        776.000000
max      20500.000000
dtype: float64
Unusable results: 8
Usable results with inferred units: 0
Results outside threshold (0.0 to 38319.04350375742): 0
../_images/notebooks_Harmonize_Tampa_Detailed_77_1.png
[53]:
cols = ['ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'QA_flag', 'Conductivity']
df.loc[df['CharacteristicName']=='Conductivity', cols]
[53]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Conductivity
436005 NaN uS/cm ResultMeasureValue: missing (NaN) result NaN
440696 NaN uS/cm ResultMeasureValue: missing (NaN) result NaN
442133 NaN uS/cm ResultMeasureValue: missing (NaN) result NaN
444571 NaN uS/cm ResultMeasureValue: missing (NaN) result NaN
445435 NaN uS/cm ResultMeasureValue: missing (NaN) result NaN
447223 NaN uS/cm ResultMeasureValue: missing (NaN) result NaN
451907 NaN uS/cm ResultMeasureValue: missing (NaN) result NaN
468050 NaN uS/cm ResultMeasureValue: missing (NaN) result NaN
479556 626 uS/cm NaN 626.0 microsiemens / centimeter
483915 688 uS/cm NaN 688.0 microsiemens / centimeter
501316 606 uS/cm NaN 606.0 microsiemens / centimeter
502422 606 uS/cm NaN 606.0 microsiemens / centimeter
505646 633 uS/cm NaN 633.0 microsiemens / centimeter
518089 775 uS/cm NaN 775.0 microsiemens / centimeter
520731 776 uS/cm NaN 776.0 microsiemens / centimeter
521718 776 uS/cm NaN 776.0 microsiemens / centimeter
523763 776 uS/cm NaN 776.0 microsiemens / centimeter
529321 775 uS/cm NaN 775.0 microsiemens / centimeter
874961 20500 uS/cm NaN 20500.0 microsiemens / centimeter

Chlorophyll a

[54]:
# Chlorophyll a
df = harmonize.harmonize(df, 'Chlorophyll a', report=True)
-Usable results-
count    43334.000000
mean         0.014368
std          0.022741
min         -0.000506
25%          0.004600
50%          0.008725
75%          0.016360
max          1.552000
dtype: float64
Unusable results: 1115
Usable results with inferred units: 4
Results outside threshold (0.0 to 0.1508140878070869): 197
../_images/notebooks_Harmonize_Tampa_Detailed_80_1.png
[55]:
cols = ['ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'QA_flag', 'Chlorophyll']
df.loc[df['CharacteristicName']=='Chlorophyll a', cols]
[55]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Chlorophyll
221067 5.94 ug/L NaN 0.005940000000000001 milligram / liter
226038 1.45 ug/L NaN 0.00145 milligram / liter
226973 2.77 ug/L NaN 0.00277 milligram / liter
227824 3.87 ug/L NaN 0.00387 milligram / liter
235915 8.15 ug/L NaN 0.008150000000000001 milligram / liter
... ... ... ... ...
1472901 18.16 ug/l NaN 0.01816 milligram / liter
1472902 41.09 ug/l NaN 0.04109 milligram / liter
1472913 23.55 ug/l NaN 0.02355 milligram / liter
1472915 37.07 ug/l NaN 0.03707 milligram / liter
1472916 61.95 ug/l NaN 0.061950000000000005 milligram / liter

44449 rows × 4 columns

Organic Carbon

[56]:
# Organic carbon (%)
df = harmonize.harmonize(df, 'Organic carbon', report=True)
-Usable results-
count    2.173000e+04
mean     2.444555e+04
std      1.898197e+06
min      0.000000e+00
25%      4.600000e+00
50%      7.100000e+00
75%      1.210000e+01
max      2.000000e+08
dtype: float64
Unusable results: 1928
Usable results with inferred units: 0
Results outside threshold (0.0 to 11413630.33831222): 8
../_images/notebooks_Harmonize_Tampa_Detailed_83_1.png
[57]:
cols = ['ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'QA_flag', 'Carbon']
df.loc[df['CharacteristicName']=='Organic carbon', cols]
[57]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Carbon
3 3.8 mg/L NaN 3.8 milligram / liter
124 19.5 mg/L NaN 19.5 milligram / liter
125 11.3 mg/L NaN 11.3 milligram / liter
129 6.7 mg/L NaN 6.7 milligram / liter
135 28.0 mg/L NaN 28.0 milligram / liter
... ... ... ... ...
1474780 5.3 mg/L NaN 5.3 milligram / liter
1474795 16 mg/L NaN 16.0 milligram / liter
1474863 11 mg/L NaN 11.0 milligram / liter
1474867 20 mg/L NaN 20.0 milligram / liter
1474920 12 mg/L NaN 12.0 milligram / liter

23658 rows × 4 columns

Turbidity (NTU)

[58]:
# Turbidity (NTU)
df = harmonize.harmonize(df, 'Turbidity', report=True, errors='ignore')
-Usable results-
count     93245.000000
mean         16.072727
std         867.733210
min          -0.047700
25%           1.500000
50%           2.400000
75%           4.100000
max      200000.000000
dtype: float64
Unusable results: 1101
Usable results with inferred units: 0
Results outside threshold (0.0 to 5222.471985770489): 155
../_images/notebooks_Harmonize_Tampa_Detailed_86_1.png
[59]:
cols = ['ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'QA_flag', 'Turbidity']
df.loc[df['CharacteristicName']=='Turbidity', cols]
[59]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Turbidity
25 4.49 NTU NaN 4.49 Nephelometric_Turbidity_Units
81 1.2 NTU NaN 1.2 Nephelometric_Turbidity_Units
108 2.9 NTU NaN 2.9 Nephelometric_Turbidity_Units
147 6.9 NTU NaN 6.9 Nephelometric_Turbidity_Units
222 4.3 NTU NaN 4.3 Nephelometric_Turbidity_Units
... ... ... ... ...
1474943 1.5 NTU NaN 1.5 Nephelometric_Turbidity_Units
1474947 3.7 NTU NaN 3.7 Nephelometric_Turbidity_Units
1474948 0.8 NTU NaN 0.8 Nephelometric_Turbidity_Units
1474953 0.8 NTU NaN 0.8 Nephelometric_Turbidity_Units
1474973 3.3 NTU NaN 3.3 Nephelometric_Turbidity_Units

94346 rows × 4 columns

Sediment

[60]:
# Sediment
df = harmonize.harmonize(df, 'Sediment', report=False)
[61]:
cols = ['ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'QA_flag', 'Sediment']
df.loc[df['CharacteristicName']=='Sediment', cols]
[61]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Sediment

Phosphorus

Note: must be merged w/ activities (package runs query by site if not already merged)

[62]:
# Phosphorus
df = harmonize.harmonize(df, 'Phosphorus')
2 Phosphorus sample fractions not in frac_dict
2 Phosphorus sample fractions not in frac_dict found in expected domains, mapped to "Other_Phosphorus"

Note: warnings for unexpected characteristic fractions. Fractions are each seperated out into their own result column.

[63]:
# All Phosphorus
cols = ['ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'QA_flag', 'TDP_Phosphorus']
df.loc[df['Phosphorus'].notna(), cols]
[63]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag TDP_Phosphorus
3156 0.049 mg/L NaN NaN
7402 0.004 mg/L NaN NaN
9350 0.049 mg/L NaN NaN
11185 0.036 mg/L NaN NaN
19612 0.050 mg/L NaN 0.05 milligram / liter
... ... ... ... ...
1474959 0.02 mg/L NaN NaN
1474960 0.18 mg/L NaN NaN
1474964 0.091 mg/L NaN NaN
1474966 0.180 mg/L NaN NaN
1474982 0.04 mg/L NaN NaN

31328 rows × 4 columns

[64]:
# Total phosphorus
df.loc[df['TP_Phosphorus'].notna(), cols]
[64]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag TDP_Phosphorus
3156 0.049 mg/L NaN NaN
7402 0.004 mg/L NaN NaN
9350 0.049 mg/L NaN NaN
11185 0.036 mg/L NaN NaN
23731 0.004 mg/L NaN NaN
... ... ... ... ...
1474959 0.02 mg/L NaN NaN
1474960 0.18 mg/L NaN NaN
1474964 0.091 mg/L NaN NaN
1474966 0.180 mg/L NaN NaN
1474982 0.04 mg/L NaN NaN

29365 rows × 4 columns

[65]:
# Total dissolved phosphorus
df.loc[df['TDP_Phosphorus'].notna(), cols]
[65]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag TDP_Phosphorus
19612 0.050 mg/L NaN 0.05 milligram / liter
29925 0.009 mg/L NaN 0.009 milligram / liter
56000 0.003 mg/L NaN 0.003 milligram / liter
119455 0.050 mg/L NaN 0.05 milligram / liter
124393 0.002 mg/L NaN 0.002 milligram / liter
... ... ... ... ...
1460824 1.0 mg/l as P NaN 1.0 milligram / liter
1460842 0.93 mg/l as P NaN 0.93 milligram / liter
1460860 0.58 mg/l as P NaN 0.58 milligram / liter
1460884 0.48 mg/l as P NaN 0.48 milligram / liter
1465353 0.166 mg/l as P NaN 0.166 milligram / liter

1099 rows × 4 columns

[66]:
# All other phosphorus sample fractions
df.loc[df['Other_Phosphorus'].notna(), cols]
[66]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag TDP_Phosphorus
221871 0.13118375 mg/L NaN NaN
238638 0.1696225 mg/L NaN NaN
239076 0.0835825 mg/L NaN NaN
245367 0.16950375 mg/L NaN NaN
254999 0.03524375 mg/L NaN NaN
... ... ... ... ...
1450276 0.058 % NaN NaN
1451133 0.041 % NaN NaN
1451913 0.078 % NaN NaN
1471478 460 mg/kg NaN NaN
1471480 5400 mg/kg NaN NaN

864 rows × 4 columns

Bacteria

Some equivalence assumptions are built-in where bacteria counts that are not equivalent are treated as such because there is no standard way to convert from one to another.

Fecal Coliform

[67]:
# Known unit with bad dimensionality ('Colony_Forming_Units * milliliter')
df = harmonize.harmonize(df, 'Fecal Coliform', report=True, errors='ignore')
/opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages/harmonize_wq/convert.py:128: UserWarning: WARNING: 'cfu/100mL' converted to NaN
  warn(f"WARNING: '{unit}' converted to NaN")
/opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages/harmonize_wq/convert.py:128: UserWarning: WARNING: 'MPN/100mL' converted to NaN
  warn(f"WARNING: '{unit}' converted to NaN")
/opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages/harmonize_wq/convert.py:128: UserWarning: WARNING: 'CFU/100mL' converted to NaN
  warn(f"WARNING: '{unit}' converted to NaN")
-Usable results-
count    8.647000e+03
mean     4.903257e+03
std      1.318438e+05
min      0.000000e+00
25%      3.000000e+00
50%      1.100000e+01
75%      6.000000e+01
max      1.000000e+07
dtype: float64
Unusable results: 55593
Usable results with inferred units: 5
Results outside threshold (0.0 to 795966.1242988216): 8
../_images/notebooks_Harmonize_Tampa_Detailed_102_2.png
[68]:
cols = ['ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'QA_flag', 'Fecal_Coliform']
df.loc[df['CharacteristicName']=='Fecal Coliform', cols]
[68]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Fecal_Coliform
13 760 cfu/100mL NaN NaN
15 2900 cfu/100mL NaN NaN
55 300 #/100mL NaN NaN
72 280 #/100mL NaN NaN
109 52 cfu/100mL NaN NaN
... ... ... ... ...
1474326 50 cfu/100mL NaN NaN
1474441 400 MPN/100mL NaN NaN
1474510 100 cfu/100mL NaN NaN
1474974 860 MPN/100mL NaN NaN
1474986 2 cfu/100ml NaN 2.0 Colony_Forming_Units / milliliter

64240 rows × 4 columns

Excherichia Coli

[69]:
# Known unit with bad dimensionality ('Colony_Forming_Units * milliliter')
df = harmonize.harmonize(df, 'Escherichia coli', report=True, errors='ignore')
/opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages/harmonize_wq/convert.py:128: UserWarning: WARNING: 'cfu/100mL' converted to NaN
  warn(f"WARNING: '{unit}' converted to NaN")
/opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages/harmonize_wq/convert.py:128: UserWarning: WARNING: 'MPN/100mL' converted to NaN
  warn(f"WARNING: '{unit}' converted to NaN")
/opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages/harmonize_wq/convert.py:128: UserWarning: WARNING: 'CFU/100mL' converted to NaN
  warn(f"WARNING: '{unit}' converted to NaN")
-Usable results-
count      142.000000
mean       976.669014
std       4473.446618
min          0.000000
25%         21.000000
50%         46.000000
75%        120.000000
max      41000.000000
dtype: float64
Unusable results: 6413
Usable results with inferred units: 0
Results outside threshold (0.0 to 27817.348725062726): 1
../_images/notebooks_Harmonize_Tampa_Detailed_105_2.png
[70]:
cols = ['ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'QA_flag', 'E_coli']
df.loc[df['CharacteristicName']=='Escherichia coli', cols]
[70]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag E_coli
275760 210 MPN/100mL NaN NaN
277312 4800 MPN/100mL NaN NaN
277564 74.5 MPN/100mL NaN NaN
277832 553.9 MPN/100mL NaN NaN
278394 87 MPN/100mL NaN NaN
... ... ... ... ...
1474963 62 MPN/100mL NaN NaN
1474967 484 MPN/100mL NaN NaN
1474978 116 MPN/100mL NaN NaN
1474981 1.0 MPN/100mL NaN NaN
1474983 517.2 MPN/100mL NaN NaN

6555 rows × 4 columns

Combining Salinity and Conductivity

Convert module has various functions to convert from one unit or characteristic to another. Some of these are used within a single characteristic during harmonization (e.g. DO saturation to concentration) while others are intended to model one characteristic as an indicator of another (e.g. estimate salinity from conductivity).

Note: this should only be done after both characteristic fields have been harmonized. Results before and after should be inspected, thresholds for outliers applied, and consider adding a QA_flag for modeled data.

Explore Salinity results:

[71]:
from harmonize_wq import convert
[72]:
# Salinity summary statistics
lst = [x.magnitude for x in list(df['Salinity'].dropna())]
q_sum = sum(lst)
print('Range: {} to {}'.format(min(lst), max(lst)))
print('Results: {} \nMean: {} PSU'.format(len(lst), q_sum/len(lst)))
Range: -0.02 to 48930.0
Results: 269049
Mean: 21.708380477587173 PSU
[73]:
# Identify extreme outliers
[x for x in lst if x >3200]
[73]:
[48930.0]

Other fields like units and QA_flag may help understand what caused high values and what results might need to be dropped from consideration

[74]:
# Columns to focus on
cols = ['ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'QA_flag', 'Salinity']
[75]:
# Look at important fields for max 5 values
salinity_series = df['Salinity'][df['Salinity'].notna()]
salinity_series.sort_values(ascending=False, inplace=True)
df[cols][df['Salinity'].isin(salinity_series[0:5])]
[75]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Salinity
288102 48930 ppth NaN 48930.0 Practical_Salinity_Units
389920 76.57 ppth NaN 76.57 Practical_Salinity_Units
497310 54.8 ppth NaN 54.8 Practical_Salinity_Units
620734 2976 ppth NaN 2976.0 Practical_Salinity_Units
645813 68 ppth NaN 68.0 Practical_Salinity_Units

Detection limits may help understand what caused low values and what results might need to be dropped or updated

[76]:
df = wrangle.add_detection(df, 'Salinity')
cols+=['ResultDetectionConditionText',
       'DetectionQuantitationLimitTypeName',
       'DetectionQuantitationLimitMeasure/MeasureValue',
       'DetectionQuantitationLimitMeasure/MeasureUnitCode']
[77]:
# Look at important fields for min 5 values (often multiple 0.0)
df[cols][df['Salinity'].isin(salinity_series[-5:])]
[77]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Salinity ResultDetectionConditionText DetectionQuantitationLimitTypeName DetectionQuantitationLimitMeasure/MeasureValue DetectionQuantitationLimitMeasure/MeasureUnitCode
25645 0.0 ppth NaN 0.0 Practical_Salinity_Units NaN Lower Quantitation Limit 5.0 ppth
25646 0.0 ppth NaN 0.0 Practical_Salinity_Units NaN Method Detection Level 1.0 ppth
46162 0.0 ppth NaN 0.0 Practical_Salinity_Units NaN Lower Quantitation Limit 5.0 ppth
46163 0.0 ppth NaN 0.0 Practical_Salinity_Units NaN Method Detection Level 1.0 ppth
373948 0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
600312 0.0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
609640 0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
695266 -0.02 ppth NaN -0.02 Practical_Salinity_Units NaN NaN NaN NaN
968090 0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
970921 0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
972585 0.00 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
973904 0.00 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
975024 0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
975801 0.00 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
976300 0.00 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
978098 0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
979274 0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
981360 0.00 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
993649 -0.01 ppth NaN -0.01 Practical_Salinity_Units NaN NaN NaN NaN
1181627 0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
1181632 0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
1181718 0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
1181719 0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
1181720 0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
1181721 0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
1184287 0.0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
1184426 0.0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
1184427 0.0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
1184428 0.0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
1184429 0.0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
1184430 0.0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
1184431 0.0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
1184526 0.0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
1189889 0.0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
1189890 0.0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
1189934 0.0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
1190005 0.0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
1190062 0.0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
1190063 0.0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
1190064 0.0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
1190065 0.0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
1190066 0.0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
1235362 0.0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
1245164 0.0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN

Explore Conductivity results:

[78]:
# Create series and inspect Conductivity values
cond_series = df['Conductivity'].dropna()
cond_series
[78]:
481663      626.0 microsiemens / centimeter
486047      688.0 microsiemens / centimeter
503565      606.0 microsiemens / centimeter
504687      606.0 microsiemens / centimeter
507936      633.0 microsiemens / centimeter
520502      775.0 microsiemens / centimeter
523177      776.0 microsiemens / centimeter
524175      776.0 microsiemens / centimeter
526238      776.0 microsiemens / centimeter
531863      775.0 microsiemens / centimeter
878329    20500.0 microsiemens / centimeter
Name: Conductivity, dtype: object

Conductivity thresholds from Freshwater Explorer: 10 > x < 5000 us/cm, use a higher threshold for coastal waters

[79]:
# Sort and check other relevant columns before converting (e.g. Salinity)
cols = ['ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'QA_flag', 'Salinity', 'Conductivity']
df.sort_values(by=['Conductivity'], ascending=False, inplace=True)
df.loc[df['Conductivity'].notna(), cols]
[79]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Salinity Conductivity
878329 20500 uS/cm NaN NaN 20500.0 microsiemens / centimeter
523177 776 uS/cm NaN NaN 776.0 microsiemens / centimeter
524175 776 uS/cm NaN NaN 776.0 microsiemens / centimeter
526238 776 uS/cm NaN NaN 776.0 microsiemens / centimeter
520502 775 uS/cm NaN NaN 775.0 microsiemens / centimeter
531863 775 uS/cm NaN NaN 775.0 microsiemens / centimeter
486047 688 uS/cm NaN NaN 688.0 microsiemens / centimeter
507936 633 uS/cm NaN NaN 633.0 microsiemens / centimeter
481663 626 uS/cm NaN NaN 626.0 microsiemens / centimeter
503565 606 uS/cm NaN NaN 606.0 microsiemens / centimeter
504687 606 uS/cm NaN NaN 606.0 microsiemens / centimeter
[80]:
# Convert values to PSU and write to Salinity
cond_series = cond_series.apply(str)  # Convert to string to convert to dimensionless (PSU)
df.loc[df['Conductivity'].notna(), 'Salinity'] = cond_series.apply(convert.conductivity_to_PSU)
df.loc[df['Conductivity'].notna(), 'Salinity']
[80]:
878329    12.242 dimensionless
523177     0.379 dimensionless
524175     0.379 dimensionless
526238     0.379 dimensionless
520502     0.379 dimensionless
531863     0.379 dimensionless
486047     0.335 dimensionless
507936     0.308 dimensionless
481663     0.304 dimensionless
503565     0.294 dimensionless
504687     0.294 dimensionless
Name: Salinity, dtype: object

Datetime

datetime() formats time using dataretrieval and ActivityStart

[81]:
# First inspect the existing unformated fields
cols = ['ActivityStartDate', 'ActivityStartTime/Time', 'ActivityStartTime/TimeZoneCode']
df[cols]
[81]:
ActivityStartDate ActivityStartTime/Time ActivityStartTime/TimeZoneCode
878329 2021-09-17 NaN NaN
523177 2007-08-15 NaN NaN
524175 2007-08-15 NaN NaN
526238 2007-08-15 NaN NaN
520502 2007-08-15 NaN NaN
... ... ... ...
1478918 1955-04-08 NaN NaN
1478919 1955-04-08 NaN NaN
1478920 1957-10-21 14:05:00 EST
1478921 1955-04-08 NaN NaN
1478922 1955-04-08 NaN NaN

1478923 rows × 3 columns

[82]:
# 'ActivityStartDate' presserves date where 'Activity_datetime' is NAT due to no time zone
df = clean.datetime(df)
df[['ActivityStartDate', 'Activity_datetime']]
/opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages/dataretrieval/utils.py:87: UserWarning: Warning: 100667 incomplete dates found, consider setting datetime_index to False.
  warnings.warn(
[82]:
ActivityStartDate Activity_datetime
878329 2021-09-17 NaT
523177 2007-08-15 NaT
524175 2007-08-15 NaT
526238 2007-08-15 NaT
520502 2007-08-15 NaT
... ... ...
1478918 1955-04-08 NaT
1478919 1955-04-08 NaT
1478920 1957-10-21 1957-10-21 19:05:00+00:00
1478921 1955-04-08 NaT
1478922 1955-04-08 NaT

1478923 rows × 2 columns

Activity_datetime combines all three time component columns into UTC. If time is missing this is NaT so a ActivityStartDate column is used to preserve date only.

Depth

Note: Data are often lacking sample depth metadata

[83]:
# Depth of sample (default units='meter')
df = clean.harmonize_depth(df)
#df.loc[df['ResultDepthHeightMeasure/MeasureValue'].dropna(), "Depth"]
df['ResultDepthHeightMeasure/MeasureValue'].dropna()
[83]:
486047     0.95
507936     0.50
481663     0.00
381280     3.00
384199     3.00
           ...
1471326    0.33
1477066    0.30
1477747    0.33
1478054    0.33
1478063    0.30
Name: ResultDepthHeightMeasure/MeasureValue, Length: 506, dtype: float64

Characteristic to Column (long to wide format)

[84]:
# Split single QA column into multiple by characteristic (rename the result to preserve these QA_flags)
df2 = wrangle.split_col(df)
df2
[84]:
OrganizationIdentifier OrganizationFormalName ActivityIdentifier ActivityStartDate ActivityStartTime/Time ActivityStartTime/TimeZoneCode MonitoringLocationIdentifier ResultIdentifier DataLoggerLine ResultDetectionConditionText ... QA_Turbidity QA_TP_Phosphorus QA_TDP_Phosphorus QA_Other_Phosphorus QA_Conductivity QA_Chlorophyll QA_Salinity QA_Carbon QA_Temperature QA_Fecal_Coliform
878329 NARS_WQX EPA National Aquatic Resources Survey (NARS) NARS_WQX-192970_2021 2021-09-17 NaN NaN NARS_WQX-NWC_FL-10535 STORET-1040690254 NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
523177 NARS_WQX EPA National Aquatic Resources Survey (NARS) NARS_WQX-PRF:0161:1:070815:2 2007-08-15 NaN NaN NARS_WQX-NLA06608-0161 STORET-183201126 NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
524175 NARS_WQX EPA National Aquatic Resources Survey (NARS) NARS_WQX-PRF:0161:1:070815:3.3 2007-08-15 NaN NaN NARS_WQX-NLA06608-0161 STORET-183201150 NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
526238 NARS_WQX EPA National Aquatic Resources Survey (NARS) NARS_WQX-PRF:0161:1:070815:3 2007-08-15 NaN NaN NARS_WQX-NLA06608-0161 STORET-183201135 NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
520502 NARS_WQX EPA National Aquatic Resources Survey (NARS) NARS_WQX-PRF:0161:1:070815:1 2007-08-15 NaN NaN NARS_WQX-NLA06608-0161 STORET-183201115 NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
1478918 USGS-FL USGS Florida Water Science Center nwisfl.01.95500762 1955-04-08 NaN NaN USGS-273926082304501 NWIS-6842541 NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
1478919 USGS-FL USGS Florida Water Science Center nwisfl.01.95500762 1955-04-08 NaN NaN USGS-273926082304501 NWIS-6842544 NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
1478920 USGS-FL USGS Florida Water Science Center nwisfl.01.95800924 1957-10-21 14:05:00 -0500 USGS-02306001 NWIS-6894410 NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
1478921 USGS-FL USGS Florida Water Science Center nwisfl.01.95500782 1955-04-08 NaN NaN USGS-274455082253601 NWIS-6842941 NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
1478922 USGS-FL USGS Florida Water Science Center nwisfl.01.95500782 1955-04-08 NaN NaN USGS-274455082253601 NWIS-6842944 NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

1409844 rows × 117 columns

[85]:
# This expands the single col (QA_flag) out to a number of new columns based on the unique characteristicNames and speciation
print('{} new columns'.format(len(df2.columns) - len(df.columns)))
14 new columns
[86]:
# Note: there are fewer rows because NAN results are also dropped in this step
print('{} fewer rows'.format(len(df)-len(df2)))
69079 fewer rows
[87]:
#Examine Carbon flags from earlier in notebook (note these are empty now because NAN is dropped)
cols = ['ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'Carbon', 'QA_Carbon']
df2.loc[df2['QA_Carbon'].notna(), cols]
[87]:
ResultMeasureValue ResultMeasure/MeasureUnitCode Carbon QA_Carbon

Next the table is divided into the columns of interest (main_df) and characteristic specific metadata (chars_df)

[88]:
# split table into main and characteristics tables
main_df, chars_df = wrangle.split_table(df2)
[89]:
# Columns still in main table
main_df.columns
[89]:
Index(['OrganizationIdentifier', 'OrganizationFormalName',
       'ActivityIdentifier', 'MonitoringLocationIdentifier', 'ProviderName',
       'Secchi', 'Temperature', 'DO', 'pH', 'Salinity', 'Nitrogen',
       'Speciation', 'TOTAL NITROGEN_ MIXED FORMS', 'Conductivity',
       'Chlorophyll', 'Carbon', 'Turbidity', 'Sediment', 'Phosphorus',
       'TP_Phosphorus', 'TDP_Phosphorus', 'Other_Phosphorus', 'Fecal_Coliform',
       'E_coli', 'DetectionQuantitationLimitTypeName',
       'DetectionQuantitationLimitMeasure/MeasureValue',
       'DetectionQuantitationLimitMeasure/MeasureUnitCode',
       'Activity_datetime', 'Depth', 'QA_E_coli', 'QA_DO', 'QA_pH',
       'QA_Nitrogen', 'QA_Secchi', 'QA_Turbidity', 'QA_TP_Phosphorus',
       'QA_TDP_Phosphorus', 'QA_Other_Phosphorus', 'QA_Conductivity',
       'QA_Chlorophyll', 'QA_Salinity', 'QA_Carbon', 'QA_Temperature',
       'QA_Fecal_Coliform'],
      dtype='object')
[90]:
# look at main table results (first 5)
main_df.head()
[90]:
OrganizationIdentifier OrganizationFormalName ActivityIdentifier MonitoringLocationIdentifier ProviderName Secchi Temperature DO pH Salinity ... QA_Turbidity QA_TP_Phosphorus QA_TDP_Phosphorus QA_Other_Phosphorus QA_Conductivity QA_Chlorophyll QA_Salinity QA_Carbon QA_Temperature QA_Fecal_Coliform
878329 NARS_WQX EPA National Aquatic Resources Survey (NARS) NARS_WQX-192970_2021 NARS_WQX-NWC_FL-10535 STORET NaN NaN NaN NaN 12.242 dimensionless ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
523177 NARS_WQX EPA National Aquatic Resources Survey (NARS) NARS_WQX-PRF:0161:1:070815:2 NARS_WQX-NLA06608-0161 STORET NaN NaN NaN NaN 0.379 dimensionless ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
524175 NARS_WQX EPA National Aquatic Resources Survey (NARS) NARS_WQX-PRF:0161:1:070815:3.3 NARS_WQX-NLA06608-0161 STORET NaN NaN NaN NaN 0.379 dimensionless ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
526238 NARS_WQX EPA National Aquatic Resources Survey (NARS) NARS_WQX-PRF:0161:1:070815:3 NARS_WQX-NLA06608-0161 STORET NaN NaN NaN NaN 0.379 dimensionless ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
520502 NARS_WQX EPA National Aquatic Resources Survey (NARS) NARS_WQX-PRF:0161:1:070815:1 NARS_WQX-NLA06608-0161 STORET NaN NaN NaN NaN 0.379 dimensionless ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

5 rows × 44 columns

[91]:
# Empty columns that could be dropped (Mostly QA columns)
cols = list(main_df.columns)
x = main_df.dropna(axis=1, how='all')
[col for col in cols if col not in x.columns]
[91]:
['Sediment',
 'QA_E_coli',
 'QA_DO',
 'QA_pH',
 'QA_Nitrogen',
 'QA_Turbidity',
 'QA_TDP_Phosphorus',
 'QA_Other_Phosphorus',
 'QA_Conductivity',
 'QA_Salinity',
 'QA_Carbon',
 'QA_Temperature']
[92]:
# Map average temperature at each station
results_gdf = visualize.map_measure(main_df, stations_clipped, 'Temperature')
results_gdf.plot(column='mean', cmap='OrRd', legend=True)
[92]:
<Axes: >
../_images/notebooks_Harmonize_Tampa_Detailed_143_1.png