Tampa Bay, FL - Detailed step-by-step

Standardize, clean and wrangle Water Quality Portal data in Tampa Bay, FL into more analytic-ready formats using the harmonize_wq package

US EPA’s Water Quality Portal (WQP) aggregates water quality, biological, and physical data provided by many organizations and has become an essential resource with tools to query and retrieval data using python or R. Given the variety of data and variety of data originators, using the data in analysis often requires data cleaning to ensure it meets the required quality standards and data wrangling to get it in a more analytic-ready format. Recognizing the definition of analysis-ready varies depending on the analysis, the harmonixe_wq package is intended to be a flexible water quality specific framework to help: - Identify differences in data units (including speciation and basis) - Identify differences in sampling or analytic methods - Resolve data errors using transparent assumptions - Reduce data to the columns that are most commonly needed - Transform data from long to wide format

Domain experts must decide what data meets their quality standards for data comparability and any thresholds for acceptance or rejection.

Detailed step-by-step workflow

This example workflow takes a deeper dive into some of the expanded functionality to examine results for different water quality parameters in Tampa Bay, FL

Install and import the required libraries

[1]:
import sys
#!python -m pip uninstall harmonize-wq --yes
# Use pip to install the package from pypi or the latest from github
#!{sys.executable} -m pip install harmonize-wq
# For latest dev version
#!{sys.executable} -m pip install git+https://github.com/USEPA/harmonize-wq.git@new_release_0-3-8
[2]:
import dataretrieval.wqp as wqp
from harmonize_wq import wrangle
from harmonize_wq import location
from harmonize_wq import harmonize
from harmonize_wq import visualize
from harmonize_wq import clean
/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/dataretrieval/nadp.py:44: UserWarning: GDAL not installed. Some functions will not work.
  warnings.warn('GDAL not installed. Some functions will not work.')

Download location data using dataretrieval

[3]:
# Read geometry for Area of Interest from geojson file url and plot
aoi_url = r'https://github.com/USEPA/Coastal_Ecological_Indicators/raw/master/DGGS_Coastal/temperature_data/TampaBay.geojson'
# geoJSON should be WGS1984 standard, but this one isn't
aoi_gdf = wrangle.as_gdf(aoi_url).to_crs(epsg=4326)
aoi_gdf.plot()
[3]:
<Axes: >
../_images/notebooks_Harmonize_Tampa_Detailed_9_1.png
[4]:
# Build query with characteristicNames and the AOI extent
query = {'characteristicName': ['Phosphorus',
                                'Temperature, water',
                                'Depth, Secchi disk depth',
                                'Dissolved oxygen (DO)',
                                'Salinity',
                                'pH',
                                'Nitrogen',
                                'Conductivity',
                                'Organic carbon',
                                'Chlorophyll a',
                                'Turbidity',
                                'Sediment',
                                'Fecal Coliform',
                                'Escherichia coli']}
query['bBox'] =wrangle.get_bounding_box(aoi_gdf)
[5]:
# Query stations (can be slow)
stations, site_md = wqp.what_sites(**query)
[6]:
# Rows and columns for results
stations.shape
[6]:
(16023, 37)
[7]:
# First 5 rows
stations.head()
[7]:
OrganizationIdentifier OrganizationFormalName MonitoringLocationIdentifier MonitoringLocationName MonitoringLocationTypeName MonitoringLocationDescriptionText HUCEightDigitCode DrainageAreaMeasure/MeasureValue DrainageAreaMeasure/MeasureUnitCode ContributingDrainageAreaMeasure/MeasureValue ... AquiferName LocalAqfrName FormationTypeText AquiferTypeName ConstructionDateText WellDepthMeasure/MeasureValue WellDepthMeasure/MeasureUnitCode WellHoleDepthMeasure/MeasureValue WellHoleDepthMeasure/MeasureUnitCode ProviderName
0 USGS-FL USGS Florida Water Science Center USGS-02300009 MANATEE RIVER AT DEVILS ELBOW NEAR FT HAMER FL Estuary NaN 3100202.0 139.0 sq mi NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NWIS
1 USGS-FL USGS Florida Water Science Center USGS-02300018 GAMBLE CREEK NEAR PARRISH FL Stream NaN 3100202.0 50.6 sq mi NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NWIS
2 USGS-FL USGS Florida Water Science Center USGS-02300021 MANATEE RIVER AT FORT HAMER FL Estuary NaN 3100202.0 216.0 sq mi NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NWIS
3 USGS-FL USGS Florida Water Science Center USGS-02300062 GLEN CREEK NEAR BRADENTON FL Stream NaN 3100202.0 2.5 sq mi NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NWIS
4 USGS-FL USGS Florida Water Science Center USGS-02300064 BRADEN RIVER AT BRADENTON FL Stream NaN 3100202.0 83.0 sq mi NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NWIS

5 rows × 37 columns

[8]:
# Columns used for an example row
stations.iloc[0][['HorizontalCoordinateReferenceSystemDatumName', 'LatitudeMeasure', 'LongitudeMeasure']]
[8]:
HorizontalCoordinateReferenceSystemDatumName        NAD83
LatitudeMeasure                                 27.520872
LongitudeMeasure                                -82.40176
Name: 0, dtype: object
[9]:
# Harmonize location datums to 4326 (Note we keep intermediate columns using intermediate_columns=True)
stations_gdf = location.harmonize_locations(stations, outEPSG=4326, intermediate_columns=True)
[10]:
# Every function has a dostring to help understand input/output and what it does
location.harmonize_locations?
[11]:
# Rows and columns for results after running the function (5 new columns, only 2 new if intermediate_columns=False)
stations_gdf.shape
[11]:
(16023, 42)
[12]:
# Example results for the new columns
stations_gdf.iloc[0][['geom_orig', 'EPSG', 'QA_flag', 'geom', 'geometry']]
[12]:
geom_orig         (-82.4017604, 27.5208719)
EPSG                                 4269.0
QA_flag                                 NaN
geom         POINT (-82.4017604 27.5208719)
geometry     POINT (-82.4017604 27.5208719)
Name: 0, dtype: object
[13]:
# geom and geometry look the same but geometry is a special datatype
stations_gdf['geometry'].dtype
[13]:
<geopandas.array.GeometryDtype at 0x7fa6a0452690>
[14]:
# Look at the different QA_flag flags that have been assigned,
# e.g., for bad datums or limited decimal precision
set(stations_gdf.loc[stations_gdf['QA_flag'].notna()]['QA_flag'])
[14]:
{'HorizontalCoordinateReferenceSystemDatumName: Bad datum OTHER, EPSG:4326 assumed',
 'HorizontalCoordinateReferenceSystemDatumName: Bad datum UNKWN, EPSG:4326 assumed',
 'LatitudeMeasure: Imprecise: lessthan3decimaldigits',
 'LatitudeMeasure: Imprecise: lessthan3decimaldigits; HorizontalCoordinateReferenceSystemDatumName: Bad datum UNKWN, EPSG:4326 assumed',
 'LatitudeMeasure: Imprecise: lessthan3decimaldigits; LongitudeMeasure: Imprecise: lessthan3decimaldigits',
 'LongitudeMeasure: Imprecise: lessthan3decimaldigits',
 'LongitudeMeasure: Imprecise: lessthan3decimaldigits; HorizontalCoordinateReferenceSystemDatumName: Bad datum OTHER, EPSG:4326 assumed'}
[15]:
# Map it
stations_gdf.plot()
[15]:
<Axes: >
../_images/notebooks_Harmonize_Tampa_Detailed_21_1.png
[16]:
# Clip it to area of interest
stations_clipped = wrangle.clip_stations(stations_gdf, aoi_gdf)
[17]:
# Map it
stations_clipped.plot()
[17]:
<Axes: >
../_images/notebooks_Harmonize_Tampa_Detailed_23_1.png
[18]:
# How many stations now?
len(stations_clipped)
[18]:
10564
[19]:
# To save the results to a shapefile
#import os
#path = ''  #specify the path (folder/directory) to save it to
#stations_clipped.to_file(os.path.join(path, 'Tampa_stations.shp'))

Retrieve Characteristic Data

[20]:
# Now query for results
query['dataProfile'] = 'narrowResult'
res_narrow, md_narrow = wqp.get_results(**query)
/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/dataretrieval/wqp.py:83: DtypeWarning: Columns (9,10,13,15,17,19,22,23,28,31,32,33,36,38,58,60,61,63,64,65,70,71,73) have mixed types. Specify dtype option on import or set low_memory=False.
  df = pd.read_csv(StringIO(response.text), delimiter=',')
[21]:
df = res_narrow
df
[21]:
OrganizationIdentifier OrganizationFormalName ActivityIdentifier ActivityStartDate ActivityStartTime/Time ActivityStartTime/TimeZoneCode MonitoringLocationIdentifier ResultIdentifier DataLoggerLine ResultDetectionConditionText ... AnalysisEndTime/TimeZoneCode ResultLaboratoryCommentCode ResultLaboratoryCommentText ResultDetectionQuantitationLimitUrl LaboratoryAccreditationIndicator LaboratoryAccreditationAuthorityName TaxonomistAccreditationIndicator TaxonomistAccreditationAuthorityName LabSamplePreparationUrl ProviderName
0 21FLHILL_WQX Environmental Protection Commission of Hillsbo... 21FLHILL_WQX-130612585-W 2013-06-12 11:01:00 EST 21FLHILL_WQX-585 STORET-301235413 NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN STORET
1 21FLSEAS_WQX Florida Department of Environmental Protection 21FLSEAS_WQX-481901119134 2013-11-19 14:01:00 EST 21FLSEAS_WQX-48SEAS190 STORET-310535134 NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN STORET
2 21FLHILL_WQX Environmental Protection Commission of Hillsbo... 21FLHILL_WQX-130702047-M 2013-07-02 11:01:00 EST 21FLHILL_WQX-047 STORET-300620295 NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN STORET
3 21FLHILL_WQX Environmental Protection Commission of Hillsbo... 21FLHILL_WQX-130716021 2013-07-16 11:01:00 EST 21FLHILL_WQX-021 STORET-300666279 NaN NaN ... NaN NaN NaN https://www.waterqualitydata.us/data/providers... NaN NaN NaN NaN NaN STORET
4 21FLHILL_WQX Environmental Protection Commission of Hillsbo... 21FLHILL_WQX-131216112-M 2013-12-16 12:01:00 EST 21FLHILL_WQX-112 STORET-301229196 NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN STORET
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
1465643 USGS-FL USGS Florida Water Science Center nwisfl.01.95500762 1955-04-08 NaN NaN USGS-273926082304501 NWIS-6842541 NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NWIS
1465644 USGS-FL USGS Florida Water Science Center nwisfl.01.95500762 1955-04-08 NaN NaN USGS-273926082304501 NWIS-6842544 NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NWIS
1465645 USGS-FL USGS Florida Water Science Center nwisfl.01.95800924 1957-10-21 14:05:00 EST USGS-02306001 NWIS-6894410 NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NWIS
1465646 USGS-FL USGS Florida Water Science Center nwisfl.01.95500782 1955-04-08 NaN NaN USGS-274455082253601 NWIS-6842941 NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NWIS
1465647 USGS-FL USGS Florida Water Science Center nwisfl.01.95500782 1955-04-08 NaN NaN USGS-274455082253601 NWIS-6842944 NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NWIS

1465648 rows × 78 columns

[22]:
# Map number of usable results at each station
gdf_count = visualize.map_counts(df, stations_clipped)
legend_kwds = {"fmt": "{:.0f}", 'bbox_to_anchor':(1, 0.75)}
gdf_count.plot(column='cnt', cmap='Blues', legend=True, scheme='quantiles', legend_kwds=legend_kwds)
[22]:
<Axes: >
../_images/notebooks_Harmonize_Tampa_Detailed_29_1.png

Harmonize Characteristic Results

Two options for functions to harmonize characteristics: harmonize_all() or harmonize(). harmonize_all runs functions on all characteristics and lets you specify how to handle errors harmonize runs functions only on the characteristic specified with char_val and lets you also choose output units, to keep intermediate columns and to do a quick report summarizing changes.

[23]:
# See Documentation
#harmonize.harmonize_all?
#harmonize.harmonize?

secchi disk depth

[24]:
# Each harmonize function has optional params, e.g., char_val is the characticName column value to use so we can send the entire df.
# Optional params: units='m', char_val='Depth, Secchi disk depth', out_col='Secchi', report=False)

# We start by demonstrating on secchi disk depth (units default to m, keep intermediate fields, see report)
df = harmonize.harmonize(df, 'Depth, Secchi disk depth', intermediate_columns=True, report=True)
/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/harmonize_wq/wq_data.py:395: UserWarning: WARNING: 'None' UNDEFINED UNIT for Secchi
  warn("WARNING: " + problem)
-Usable results-
count    86883.000000
mean         1.470456
std          0.901391
min         -9.000000
25%          0.900000
50%          1.300000
75%          1.900000
max         32.004000
dtype: float64
Unusable results: 219
Usable results with inferred units: 0
Results outside threshold (0.0 to 6.8787994128969): 47
../_images/notebooks_Harmonize_Tampa_Detailed_34_2.png

The threshold is based on standard deviations and is currently only used in the histogram.

[25]:
# Look at a table of just Secchi results and focus on subset of columns
cols = ['MonitoringLocationIdentifier', 'ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'QA_flag', 'Units']
sechi_results = df.loc[df['CharacteristicName']=='Depth, Secchi disk depth', cols + ['Secchi']]
sechi_results
[25]:
MonitoringLocationIdentifier ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Units Secchi
78 21FLHILL_WQX-171 0.60 m NaN m 0.6 meter
103 21FLHILL_WQX-092 5.00 m NaN m 5.0 meter
118 21FLHILL_WQX-161 0.50 m NaN m 0.5 meter
130 21FLHILL_WQX-14434 1.30 m NaN m 1.3 meter
132 21FLCOSP_WQX-COSPE6-4 2.6 m NaN m 2.6 meter
... ... ... ... ... ... ...
1465327 21FLBSG-4 1 m NaN m 1.0 meter
1465328 21FLBSG-4 1.1 m NaN m 1.1 meter
1465329 21FLBSG-4 1.5 m NaN m 1.5 meter
1465330 21FLBSG-4 1.4 m NaN m 1.4 meter
1465331 21FLBSG-4 1.4 m NaN m 1.4 meter

87102 rows × 6 columns

[26]:
# Look at unusable(NAN) results
sechi_results.loc[df['Secchi'].isna()]
[26]:
MonitoringLocationIdentifier ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Units Secchi
661231 21FLPDEM_WQX-14-02 Not Reported m ResultMeasureValue: "Not Reported" result cann... m NaN
666285 21FLKWAT_WQX-HIL-RAINBOW-1 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... m NaN
669267 21FLKWAT_WQX-PIN-COFFEEPOBAYOU-8 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... m NaN
671238 21FLKWAT_WQX-PIN-COFFEEPOBAYOU-6 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... m NaN
672987 21FLPDEM_WQX-E2-D-19-02 Not Reported m ResultMeasureValue: "Not Reported" result cann... m NaN
... ... ... ... ... ... ...
1458855 21FLKWAT_WQX-HIL-CHURCH-1 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... m NaN
1459179 21FLKWAT_WQX-HIL-ARMISTEAD-3 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... m NaN
1459995 21FLKWAT_WQX-HIL-CHURCH-3 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... m NaN
1460570 21FLKWAT_WQX-HIL-ARMISTEAD-1 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... m NaN
1460641 21FLKWAT_WQX-HIL-ARMISTEAD-2 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... m NaN

219 rows × 6 columns

[27]:
# look at the QA flag for first row from above
list(sechi_results.loc[df['Secchi'].isna()]['QA_flag'])[0]
[27]:
'ResultMeasureValue: "Not Reported" result cannot be used'
[28]:
# All cases where there was a QA flag
sechi_results.loc[df['QA_flag'].notna()]
[28]:
MonitoringLocationIdentifier ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Units Secchi
244360 NARS_WQX-NCCA10-1674 -9 None ResultMeasure/MeasureUnitCode: 'None' UNDEFINE... m -9.0 meter
661231 21FLPDEM_WQX-14-02 Not Reported m ResultMeasureValue: "Not Reported" result cann... m NaN
666285 21FLKWAT_WQX-HIL-RAINBOW-1 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... m NaN
669267 21FLKWAT_WQX-PIN-COFFEEPOBAYOU-8 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... m NaN
671238 21FLKWAT_WQX-PIN-COFFEEPOBAYOU-6 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... m NaN
... ... ... ... ... ... ...
1458855 21FLKWAT_WQX-HIL-CHURCH-1 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... m NaN
1459179 21FLKWAT_WQX-HIL-ARMISTEAD-3 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... m NaN
1459995 21FLKWAT_WQX-HIL-CHURCH-3 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... m NaN
1460570 21FLKWAT_WQX-HIL-ARMISTEAD-1 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... m NaN
1460641 21FLKWAT_WQX-HIL-ARMISTEAD-2 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... m NaN

220 rows × 6 columns

If both value and unit are missing nothing can be done, a unitless (NaN) value is assumed as to be in default units but a QA_flag is added

[29]:
# Aggregate secchi data by station
visualize.station_summary(sechi_results, 'Secchi')
[29]:
MonitoringLocationIdentifier cnt mean
0 21FLBRA-1530-A 2 0.375000
1 21FLBRA-1541B-A 3 1.166667
2 21FLBRA-1574-A 1 0.250000
3 21FLBRA-1574A-A 2 0.250000
4 21FLBRA-1574A-B 1 1.250000
... ... ... ...
11680 USGS-280630082350900 3 1.966667
11681 USGS-280635082322100 2 2.100000
11682 USGS-280640082434700 3 2.302933
11683 USGS-280719082291400 2 1.000000
11684 USGS-280730082431800 3 1.947333

11685 rows × 3 columns

[30]:
# Map number of usable results at each station
gdf_count = visualize.map_counts(sechi_results, stations_clipped)
gdf_count.plot(column='cnt', cmap='Blues', legend=True, scheme='quantiles', legend_kwds=legend_kwds)
/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/mapclassify/classifiers.py:1653: UserWarning: Not enough unique values in array to form 5 classes. Setting k to 2.
  self.bins = quantile(y, k=k)
[30]:
<Axes: >
../_images/notebooks_Harmonize_Tampa_Detailed_42_2.png
[31]:
# Map average results at each station
gdf_avg = visualize.map_measure(sechi_results, stations_clipped, 'Secchi')
gdf_avg.plot(column='mean', cmap='OrRd', legend=True)
[31]:
<Axes: >
../_images/notebooks_Harmonize_Tampa_Detailed_43_1.png

Temperature

The default error=’raise’, makes it so that there is an error when there is a dimensionality error (i.e. when units can’t be converted). Here we would get the error: DimensionalityError: Cannot convert from ‘count’ (dimensionless) to ‘degree_Celsius’ ([temperature])

[32]:
#'Temperature, water'
# Note: Default errors='raise'
df = harmonize.harmonize(df, 'Temperature, water', intermediate_columns=True, report=True)
-Usable results-
count    300062.000000
mean         25.306539
std          79.896745
min          -2.900000
25%          21.200000
50%          25.900000
75%          29.200000
max       43696.000000
dtype: float64
Unusable results: 153
Usable results with inferred units: 0
Results outside threshold (0.0 to 504.6870062954504): 2
../_images/notebooks_Harmonize_Tampa_Detailed_46_1.png
[33]:
# Look at what was changed
cols = ['MonitoringLocationIdentifier', 'ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'QA_flag', 'Temperature', 'Units']
temperature_results = df.loc[df['CharacteristicName']=='Temperature, water', cols]
temperature_results
[33]:
MonitoringLocationIdentifier ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Temperature Units
2 21FLHILL_WQX-047 28.19 deg C NaN 28.19 degree_Celsius degC
23 21FLHILL_WQX-1509 27.67 deg C NaN 27.67 degree_Celsius degC
25 21FLHILL_WQX-060 30.24 deg C NaN 30.24 degree_Celsius degC
27 21FLTBW_WQX-NAB 30.67 deg C NaN 30.67 degree_Celsius degC
28 21FLTBW_WQX-DISM 26.5 deg C NaN 26.5 degree_Celsius degC
... ... ... ... ... ... ...
1465632 USGS-273217082335701 28.9 deg C NaN 28.9 degree_Celsius degC
1465635 USGS-274322082245501 24.4 deg C NaN 24.4 degree_Celsius degC
1465640 USGS-274302082280801 25.0 deg C NaN 25.0 degree_Celsius degC
1465643 USGS-273926082304501 25.7 deg C NaN 25.7 degree_Celsius degC
1465646 USGS-274455082253601 26.1 deg C NaN 26.1 degree_Celsius degC

300215 rows × 6 columns

In the above we can see examples where the results were in deg F and in the result field they’ve been converted into degree_Celsius

[34]:
# Examine missing units
temperature_results.loc[df['ResultMeasure/MeasureUnitCode'].isna()]
[34]:
MonitoringLocationIdentifier ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Temperature Units
665577 21FLPDEM_WQX-19-13 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... NaN degC
666462 21FLPDEM_WQX-24-07 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... NaN degC
667856 21FLPDEM_WQX-12-04 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... NaN degC
673026 21FLPDEM_WQX-23-08 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... NaN degC
679058 21FLPDEM_WQX-04-04 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... NaN degC
... ... ... ... ... ... ...
892842 21FLPDEM_WQX-35-01 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... NaN degC
896988 21FLPDEM_WQX-23-08 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... NaN degC
1349634 USGS-280228082343000 NaN NaN ResultMeasureValue: missing (NaN) result; Resu... NaN degC
1434517 USGS-02306028 NaN NaN ResultMeasureValue: missing (NaN) result; Resu... NaN degC
1434800 USGS-02306028 NaN NaN ResultMeasureValue: missing (NaN) result; Resu... NaN degC

87 rows × 6 columns

We can see where the units were missing, the results were assumed to be in degree_Celsius already

[35]:
# This is also noted in the QA_flag field
list(temperature_results.loc[df['ResultMeasure/MeasureUnitCode'].isna(), 'QA_flag'])[0]
[35]:
'ResultMeasureValue: "Not Reported" result cannot be used; ResultMeasure/MeasureUnitCode: MISSING UNITS, degC assumed'
[36]:
# Look for any without usable results
temperature_results.loc[df['Temperature'].isna()]
[36]:
MonitoringLocationIdentifier ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Temperature Units
665577 21FLPDEM_WQX-19-13 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... NaN degC
666462 21FLPDEM_WQX-24-07 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... NaN degC
667856 21FLPDEM_WQX-12-04 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... NaN degC
673026 21FLPDEM_WQX-23-08 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... NaN degC
679058 21FLPDEM_WQX-04-04 Not Reported NaN ResultMeasureValue: "Not Reported" result cann... NaN degC
... ... ... ... ... ... ...
1460117 21FLPDEM_WQX-06-06 Not Reported deg C ResultMeasureValue: "Not Reported" result cann... NaN degC
1460141 21FLPDEM_WQX-12-02 Not Reported deg C ResultMeasureValue: "Not Reported" result cann... NaN degC
1460148 21FLPDEM_WQX-W7-D-23-08 Not Reported deg C ResultMeasureValue: "Not Reported" result cann... NaN degC
1460229 21FLPDEM_WQX-12-06 Not Reported deg C ResultMeasureValue: "Not Reported" result cann... NaN degC
1460439 21FLPDEM_WQX-22-12 Not Reported deg C ResultMeasureValue: "Not Reported" result cann... NaN degC

153 rows × 6 columns

[37]:
# Aggregate temperature data by station
visualize.station_summary(temperature_results, 'Temperature')
[37]:
MonitoringLocationIdentifier cnt mean
0 21FLBRA-1530-A 12 27.593333
1 21FLBRA-1530-B 7 26.290000
2 21FLBRA-1541A-A 6 26.016667
3 21FLBRA-1541B-A 6 26.743333
4 21FLBRA-1574-A 5 27.890000
... ... ... ...
14839 USGS-280726082313300 4 28.025000
14840 USGS-280728082301101 54 25.083333
14841 USGS-280729082313501 1 27.400000
14842 USGS-280730082313201 1 24.700000
14843 USGS-280730082431800 11 22.018182

14844 rows × 3 columns

[38]:
# Map number of usable results at each station
gdf_count = visualize.map_counts(temperature_results, stations_clipped)
gdf_count.plot(column='cnt', cmap='Blues', legend=True, scheme='quantiles', legend_kwds=legend_kwds)
/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/mapclassify/classifiers.py:1653: UserWarning: Not enough unique values in array to form 5 classes. Setting k to 4.
  self.bins = quantile(y, k=k)
[38]:
<Axes: >
../_images/notebooks_Harmonize_Tampa_Detailed_54_2.png
[39]:
# Map average results at each station
gdf_avg = visualize.map_measure(temperature_results, stations_clipped, 'Temperature')
gdf_avg.plot(column='mean', cmap='OrRd', legend=True)
[39]:
<Axes: >
../_images/notebooks_Harmonize_Tampa_Detailed_55_1.png

Dissolved oxygen

[40]:
# look at Dissolved oxygen (DO), but this time without intermediate fields
df = harmonize.harmonize(df, 'Dissolved oxygen (DO)')

Note: Imediately when we run a harmonization function without the intermediate fields they’re deleted.

[41]:
# Look at what was changed
cols = ['MonitoringLocationIdentifier', 'ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'QA_flag', 'DO']
do_res = df.loc[df['CharacteristicName']=='Dissolved oxygen (DO)', cols]
do_res
[41]:
MonitoringLocationIdentifier ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag DO
0 21FLHILL_WQX-585 9.32 mg/L NaN 9.32 milligram / liter
9 21FLHILL_WQX-1611 4.90 mg/L NaN 4.9 milligram / liter
11 21FLHILL_WQX-1606 2.56 mg/L NaN 2.56 milligram / liter
14 21FLPDEM_WQX-24-01 68.7 % NaN 0.05676222371166 milligram / liter
19 21FLTBW_WQX-DISN 6.36 mg/L NaN 6.36 milligram / liter
... ... ... ... ... ...
1465348 21FLBSG-4 4 mg/l NaN 4.0 milligram / liter
1465349 21FLBSG-4 7.2 mg/l NaN 7.2 milligram / liter
1465350 21FLBSG-4 7.4 mg/l NaN 7.4 milligram / liter
1465351 21FLBSG-4 7.9 mg/l NaN 7.9 milligram / liter
1465352 21FLBSG-4 8.9 mg/l NaN 8.9 milligram / liter

269613 rows × 5 columns

[42]:
do_res.loc[do_res['ResultMeasure/MeasureUnitCode']!='mg/l']
[42]:
MonitoringLocationIdentifier ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag DO
0 21FLHILL_WQX-585 9.32 mg/L NaN 9.32 milligram / liter
9 21FLHILL_WQX-1611 4.90 mg/L NaN 4.9 milligram / liter
11 21FLHILL_WQX-1606 2.56 mg/L NaN 2.56 milligram / liter
14 21FLPDEM_WQX-24-01 68.7 % NaN 0.05676222371166 milligram / liter
19 21FLTBW_WQX-DISN 6.36 mg/L NaN 6.36 milligram / liter
... ... ... ... ... ...
1460635 21FLPDEM_WQX-W7-A-23-07 8.92 mg/L NaN 8.92 milligram / liter
1460636 21FLPDEM_WQX-10-02 7.79 mg/L NaN 7.79 milligram / liter
1460652 21FLPDEM_WQX-11-05 8.31 mg/L NaN 8.31 milligram / liter
1460661 21FLPDEM_WQX-E5-B-23-07 6.57 mg/L NaN 6.57 milligram / liter
1460663 21FLSWFD_WQX-800045 6.77 mg/L NaN 6.77 milligram / liter

172624 rows × 5 columns

Though there were no results in %, the conversion from percent saturation (%) to mg/l is special. This equation is being improved by integrating tempertaure and pressure instead of assuming STP (see DO_saturation())

[43]:
# Aggregate data by station
visualize.station_summary(do_res, 'DO')
[43]:
MonitoringLocationIdentifier cnt mean
0 21FLBRA-1530-A 12 2.785000
1 21FLBRA-1530-B 7 4.042857
2 21FLBRA-1541A-A 6 4.721667
3 21FLBRA-1541B-A 6 6.600000
4 21FLBRA-1574-A 5 4.378000
... ... ... ...
13413 NARS_WQX-NCCA10-1672 8 5.437500
13414 NARS_WQX-NCCA10-1673 20 4.115000
13415 NARS_WQX-NCCA10-1674 6 2.466667
13416 NARS_WQX-NLA06608-0161 5 6.500000
13417 NARS_WQX-NLA_FL-10127 3 9.033333

13418 rows × 3 columns

[44]:
# Map number of usable results at each station
gdf_count = visualize.map_counts(do_res, stations_clipped)
gdf_count.plot(column='cnt', cmap='Blues', legend=True, scheme='quantiles', legend_kwds=legend_kwds)
/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/mapclassify/classifiers.py:1653: UserWarning: Not enough unique values in array to form 5 classes. Setting k to 4.
  self.bins = quantile(y, k=k)
[44]:
<Axes: >
../_images/notebooks_Harmonize_Tampa_Detailed_63_2.png
[45]:
# Map average results at each station
gdf_avg = visualize.map_measure(do_res, stations_clipped, 'DO')
gdf_avg.plot(column='mean', cmap='OrRd', legend=True)
[45]:
<Axes: >
../_images/notebooks_Harmonize_Tampa_Detailed_64_1.png

pH

[46]:
# pH, this time looking at a report
df = harmonize.harmonize(df, 'pH', report=True)
-Usable results-
count    276387.000000
mean          7.762071
std           0.472551
min           0.370000
25%           7.520000
50%           7.890000
75%           8.070000
max          12.970000
dtype: float64
Unusable results: 173
Usable results with inferred units: 0
Results outside threshold (0.0 to 10.5973790448676): 7
../_images/notebooks_Harmonize_Tampa_Detailed_66_1.png

Note the warnings that occur when a unit is not recognized by the package. These occur even when report=False. Future versions could include these as defined units for pH, but here it wouldn’t alter results.

[47]:
df.loc[df['CharacteristicName']=='pH', ['ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'QA_flag', 'pH']]
[47]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag pH
4 7.48 None NaN 7.48 dimensionless
5 8.18 None NaN 8.18 dimensionless
7 7.81 None NaN 7.81 dimensionless
12 7.92 None NaN 7.92 dimensionless
13 7.8 None NaN 7.8 dimensionless
... ... ... ... ...
1465641 7.9 std units NaN 7.9 dimensionless
1465642 7.3 std units NaN 7.3 dimensionless
1465644 7.8 std units NaN 7.8 dimensionless
1465645 7.7 std units NaN 7.7 dimensionless
1465647 7.6 std units NaN 7.6 dimensionless

276560 rows × 4 columns

‘None’ is uninterpretable and replaced with NaN, which then gets replaced with ‘dimensionless’ since pH is unitless

Salinity

[48]:
# Salinity
df = harmonize.harmonize(df, 'Salinity', report=True, errors='ignore')
-Usable results-
count    267183.000000
mean         21.709492
std          95.351598
min          -0.020000
25%          18.050000
50%          24.900000
75%          28.650000
max       48930.000000
dtype: float64
Unusable results: 1252
Usable results with inferred units: 0
Results outside threshold (0.0 to 593.8190792053073): 4
../_images/notebooks_Harmonize_Tampa_Detailed_71_1.png
[49]:
cols = ['ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'QA_flag', 'Salinity']
df.loc[df['CharacteristicName']=='Salinity', cols]
[49]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Salinity
1 40 ppth NaN 40.0 Practical_Salinity_Units
6 29 PSS NaN 29.0 Practical_Salinity_Units
8 26.04 PSS NaN 26.04 Practical_Salinity_Units
15 0.18 ppth NaN 0.18 Practical_Salinity_Units
17 5.9 ppth NaN 5.9 Practical_Salinity_Units
... ... ... ... ...
1465333 21.3 PSS NaN 21.3 Practical_Salinity_Units
1465335 20.97 PSS NaN 20.97 Practical_Salinity_Units
1465338 19.9 PSS NaN 19.9 Practical_Salinity_Units
1465344 20.4 PSS NaN 20.4 Practical_Salinity_Units
1465345 21.8 PSS NaN 21.8 Practical_Salinity_Units

268435 rows × 4 columns

Nitrogen

[50]:
# Nitrogen
df = harmonize.harmonize(df, 'Nitrogen', report=True)
-Usable results-
count    163.000000
mean       1.575389
std        4.532429
min        0.024000
25%        0.202720
50%        0.315560
75%        0.500170
max       22.500000
dtype: float64
Unusable results: 2
Usable results with inferred units: 0
Results outside threshold (0.0 to 28.769965070579055): 0
../_images/notebooks_Harmonize_Tampa_Detailed_74_1.png
[51]:
cols = ['ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'QA_flag', 'Nitrogen']
df.loc[df['CharacteristicName']=='Nitrogen', cols]
[51]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Nitrogen
221815 0.39 mg/L NaN 0.39 milligram / liter
237910 0.4475 mg/L NaN 0.4475 milligram / liter
240679 0.425 mg/L NaN 0.425 milligram / liter
254255 0.4625 mg/L NaN 0.4625 milligram / liter
255860 0.33625 mg/L NaN 0.33625 milligram / liter
... ... ... ... ...
1463816 0.084 mg/l NaN 0.084 milligram / liter
1463824 0.166 mg/l NaN 0.166 milligram / liter
1463834 0.091 mg/l NaN 0.091 milligram / liter
1463868 0.057 mg/l NaN 0.057 milligram / liter
1464023 0.030 mg/l NaN 0.03 milligram / liter

165 rows × 4 columns

Conductivity

[52]:
# Conductivity
df = harmonize.harmonize(df, 'Conductivity', report=True)
-Usable results-
count     10.000000
mean     703.700000
std       79.037333
min      606.000000
25%      627.750000
50%      731.500000
75%      775.750000
max      776.000000
dtype: float64
Unusable results: 8
Usable results with inferred units: 0
Results outside threshold (0.0 to 1177.9239977057255): 0
../_images/notebooks_Harmonize_Tampa_Detailed_77_1.png
[53]:
cols = ['ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'QA_flag', 'Conductivity']
df.loc[df['CharacteristicName']=='Conductivity', cols]
[53]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Conductivity
385072 NaN uS/cm ResultMeasureValue: missing (NaN) result NaN
390188 NaN uS/cm ResultMeasureValue: missing (NaN) result NaN
391236 NaN uS/cm ResultMeasureValue: missing (NaN) result NaN
393815 NaN uS/cm ResultMeasureValue: missing (NaN) result NaN
394231 NaN uS/cm ResultMeasureValue: missing (NaN) result NaN
396564 NaN uS/cm ResultMeasureValue: missing (NaN) result NaN
401375 NaN uS/cm ResultMeasureValue: missing (NaN) result NaN
417408 NaN uS/cm ResultMeasureValue: missing (NaN) result NaN
479322 626 uS/cm NaN 626.0 microsiemens / centimeter
483940 688 uS/cm NaN 688.0 microsiemens / centimeter
501511 606 uS/cm NaN 606.0 microsiemens / centimeter
502372 606 uS/cm NaN 606.0 microsiemens / centimeter
505494 633 uS/cm NaN 633.0 microsiemens / centimeter
574710 775 uS/cm NaN 775.0 microsiemens / centimeter
577458 776 uS/cm NaN 776.0 microsiemens / centimeter
578428 776 uS/cm NaN 776.0 microsiemens / centimeter
580540 776 uS/cm NaN 776.0 microsiemens / centimeter
585811 775 uS/cm NaN 775.0 microsiemens / centimeter

Chlorophyll a

[54]:
# Chlorophyll a
df = harmonize.harmonize(df, 'Chlorophyll a', report=True)
-Usable results-
count    43333.000000
mean         0.014368
std          0.022741
min         -0.000506
25%          0.004600
50%          0.008720
75%          0.016360
max          1.552000
dtype: float64
Unusable results: 1115
Usable results with inferred units: 4
Results outside threshold (0.0 to 0.15081314171981786): 197
../_images/notebooks_Harmonize_Tampa_Detailed_80_1.png
[55]:
cols = ['ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'QA_flag', 'Chlorophyll']
df.loc[df['CharacteristicName']=='Chlorophyll a', cols]
[55]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Chlorophyll
220687 5.94 ug/L NaN 0.005940000000000001 milligram / liter
225841 1.45 ug/L NaN 0.00145 milligram / liter
226736 2.77 ug/L NaN 0.00277 milligram / liter
228074 3.87 ug/L NaN 0.00387 milligram / liter
235704 8.15 ug/L NaN 0.008150000000000001 milligram / liter
... ... ... ... ...
1465325 18.16 ug/l NaN 0.01816 milligram / liter
1465326 41.09 ug/l NaN 0.04109 milligram / liter
1465337 23.55 ug/l NaN 0.02355 milligram / liter
1465339 37.07 ug/l NaN 0.03707 milligram / liter
1465340 61.95 ug/l NaN 0.061950000000000005 milligram / liter

44448 rows × 4 columns

Organic Carbon

[56]:
# Organic carbon (%)
df = harmonize.harmonize(df, 'Organic carbon', report=True)
-Usable results-
count    2.159900e+04
mean     2.459375e+04
std      1.903944e+06
min      0.000000e+00
25%      4.600000e+00
50%      7.100000e+00
75%      1.200000e+01
max      2.000000e+08
dtype: float64
Unusable results: 1928
Usable results with inferred units: 0
Results outside threshold (0.0 to 11448260.421998743): 8
../_images/notebooks_Harmonize_Tampa_Detailed_83_1.png
[57]:
cols = ['ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'QA_flag', 'Carbon']
df.loc[df['CharacteristicName']=='Organic carbon', cols]
[57]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Carbon
3 3.8 mg/L NaN 3.8 milligram / liter
68 28.0 mg/L NaN 28.0 milligram / liter
272 3.4 mg/L NaN 3.4 milligram / liter
287 6.7 mg/L NaN 6.7 milligram / liter
346 5.8 mg/L NaN 5.8 milligram / liter
... ... ... ... ...
1462880 0.83 mg/l NaN 0.83 milligram / liter
1462930 0.71 mg/l NaN 0.71 milligram / liter
1462937 1.43 mg/l NaN 1.43 milligram / liter
1462945 0.90 mg/l NaN 0.9 milligram / liter
1462954 0.68 mg/l NaN 0.68 milligram / liter

23527 rows × 4 columns

Turbidity (NTU)

[58]:
# Turbidity (NTU)
df = harmonize.harmonize(df, 'Turbidity', report=True, errors='ignore')
-Usable results-
count     92686.00000
mean         16.13425
std         870.34539
min          -0.04770
25%           1.50000
50%           2.40000
75%           4.08000
max      200000.00000
dtype: float64
Unusable results: 1100
Usable results with inferred units: 0
Results outside threshold (0.0 to 5238.206591642857): 155
../_images/notebooks_Harmonize_Tampa_Detailed_86_1.png
[59]:
cols = ['ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'QA_flag', 'Turbidity']
df.loc[df['CharacteristicName']=='Turbidity', cols]
[59]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Turbidity
120 2.3 NTU NaN 2.3 Nephelometric_Turbidity_Units
143 2.6 NTU NaN 2.6 Nephelometric_Turbidity_Units
284 0.9 NTU NaN 0.9 Nephelometric_Turbidity_Units
296 3.0 NTU NaN 3.0 Nephelometric_Turbidity_Units
313 2.0 NTU NaN 2.0 Nephelometric_Turbidity_Units
... ... ... ... ...
1462881 0.2 NTRU NaN 0.2 Nephelometric_Turbidity_Units
1462931 2.1 NTRU NaN 2.1 Nephelometric_Turbidity_Units
1462938 0.4 NTRU NaN 0.4 Nephelometric_Turbidity_Units
1462946 2.0 NTRU NaN 2.0 Nephelometric_Turbidity_Units
1462955 0.1 NTRU NaN 0.1 Nephelometric_Turbidity_Units

93786 rows × 4 columns

Sediment

[60]:
# Sediment
df = harmonize.harmonize(df, 'Sediment', report=False)
[61]:
cols = ['ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'QA_flag', 'Sediment']
df.loc[df['CharacteristicName']=='Sediment', cols]
[61]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Sediment

Phosphorus

Note: must be merged w/ activities (package runs query by site if not already merged)

[62]:
# Phosphorus
df = harmonize.harmonize(df, 'Phosphorus')
2 Phosphorus sample fractions not in frac_dict
2 Phosphorus sample fractions not in frac_dict found in expected domains, mapped to "Other_Phosphorus"

Note: warnings for unexpected characteristic fractions. Fractions are each seperated out into their own result column.

[63]:
# All Phosphorus
cols = ['ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'QA_flag', 'TDP_Phosphorus']
df.loc[df['Phosphorus'].notna(), cols]
[63]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag TDP_Phosphorus
3379 0.049 mg/L NaN NaN
7735 0.004 mg/L NaN NaN
9147 0.049 mg/L NaN NaN
10947 0.036 mg/L NaN NaN
19519 0.050 mg/L NaN 0.05 milligram / liter
... ... ... ... ...
1464113 0.065 mg/l as P NaN NaN
1464118 0.027 mg/l as P NaN NaN
1464124 0.04 mg/l as P NaN NaN
1464139 0.05 mg/l as P NaN NaN
1464156 0.04 mg/l as P NaN NaN

30713 rows × 4 columns

[64]:
# Total phosphorus
df.loc[df['TP_Phosphorus'].notna(), cols]
[64]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag TDP_Phosphorus
3379 0.049 mg/L NaN NaN
7735 0.004 mg/L NaN NaN
9147 0.049 mg/L NaN NaN
10947 0.036 mg/L NaN NaN
23387 0.004 mg/L NaN NaN
... ... ... ... ...
1464113 0.065 mg/l as P NaN NaN
1464118 0.027 mg/l as P NaN NaN
1464124 0.04 mg/l as P NaN NaN
1464139 0.05 mg/l as P NaN NaN
1464156 0.04 mg/l as P NaN NaN

28750 rows × 4 columns

[65]:
# Total dissolved phosphorus
df.loc[df['TDP_Phosphorus'].notna(), cols]
[65]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag TDP_Phosphorus
19519 0.050 mg/L NaN 0.05 milligram / liter
29585 0.009 mg/L NaN 0.009 milligram / liter
56022 0.003 mg/L NaN 0.003 milligram / liter
65531 0.050 mg/L NaN 0.05 milligram / liter
70682 0.002 mg/L NaN 0.002 milligram / liter
... ... ... ... ...
1451036 1.0 mg/l as P NaN 1.0 milligram / liter
1451054 0.93 mg/l as P NaN 0.93 milligram / liter
1451072 0.58 mg/l as P NaN 0.58 milligram / liter
1451096 0.48 mg/l as P NaN 0.48 milligram / liter
1453869 0.166 mg/l as P NaN 0.166 milligram / liter

1099 rows × 4 columns

[66]:
# All other phosphorus sample fractions
df.loc[df['Other_Phosphorus'].notna(), cols]
[66]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag TDP_Phosphorus
221968 0.13118375 mg/L NaN NaN
238400 0.1696225 mg/L NaN NaN
239076 0.0835825 mg/L NaN NaN
245328 0.16950375 mg/L NaN NaN
255041 0.03524375 mg/L NaN NaN
... ... ... ... ...
1438772 0.058 % NaN NaN
1439629 0.041 % NaN NaN
1440409 0.078 % NaN NaN
1462701 460 mg/kg NaN NaN
1462703 5400 mg/kg NaN NaN

864 rows × 4 columns

Bacteria

Some equivalence assumptions are built-in where bacteria counts that are not equivalent are treated as such because there is no standard way to convert from one to another.

Fecal Coliform

[67]:
# Known unit with bad dimensionality ('Colony_Forming_Units * milliliter')
df = harmonize.harmonize(df, 'Fecal Coliform', report=True, errors='ignore')
/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/harmonize_wq/convert.py:128: UserWarning: WARNING: 'MPN/100mL' converted to NaN
  warn(f"WARNING: '{unit}' converted to NaN")
/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/harmonize_wq/convert.py:128: UserWarning: WARNING: 'CFU/100mL' converted to NaN
  warn(f"WARNING: '{unit}' converted to NaN")
/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/harmonize_wq/convert.py:128: UserWarning: WARNING: 'cfu/100mL' converted to NaN
  warn(f"WARNING: '{unit}' converted to NaN")
-Usable results-
count    8.647000e+03
mean     4.903257e+03
std      1.318438e+05
min      0.000000e+00
25%      3.000000e+00
50%      1.100000e+01
75%      6.000000e+01
max      1.000000e+07
dtype: float64
Unusable results: 55551
Usable results with inferred units: 5
Results outside threshold (0.0 to 795966.1242988213): 8
../_images/notebooks_Harmonize_Tampa_Detailed_102_2.png
[68]:
cols = ['ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'QA_flag', 'Fecal_Coliform']
df.loc[df['CharacteristicName']=='Fecal Coliform', cols]
[68]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Fecal_Coliform
10 760 cfu/100mL NaN NaN
31 300 #/100mL NaN NaN
41 280 #/100mL NaN NaN
62 5 cfu/100mL NaN NaN
65 260 #/100mL NaN NaN
... ... ... ... ...
1457975 100.0 cfu/100ml NaN 100.0 Colony_Forming_Units / milliliter
1458014 1100.0 cfu/100ml NaN 1100.0 Colony_Forming_Units / milliliter
1458102 300.0 cfu/100ml NaN 300.0 Colony_Forming_Units / milliliter
1458156 160.0 cfu/100ml NaN 160.0 Colony_Forming_Units / milliliter
1465355 2 cfu/100ml NaN 2.0 Colony_Forming_Units / milliliter

64198 rows × 4 columns

Excherichia Coli

[69]:
# Known unit with bad dimensionality ('Colony_Forming_Units * milliliter')
df = harmonize.harmonize(df, 'Escherichia coli', report=True, errors='ignore')
/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/harmonize_wq/convert.py:128: UserWarning: WARNING: 'MPN/100mL' converted to NaN
  warn(f"WARNING: '{unit}' converted to NaN")
/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/harmonize_wq/convert.py:128: UserWarning: WARNING: 'CFU/100mL' converted to NaN
  warn(f"WARNING: '{unit}' converted to NaN")
/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/harmonize_wq/convert.py:128: UserWarning: WARNING: 'cfu/100mL' converted to NaN
  warn(f"WARNING: '{unit}' converted to NaN")
-Usable results-
count      142.000000
mean       976.669014
std       4473.446618
min          0.000000
25%         21.000000
50%         46.000000
75%        120.000000
max      41000.000000
dtype: float64
Unusable results: 6109
Usable results with inferred units: 0
Results outside threshold (0.0 to 27817.348725062726): 1
../_images/notebooks_Harmonize_Tampa_Detailed_105_2.png
[70]:
cols = ['ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'QA_flag', 'E_coli']
df.loc[df['CharacteristicName']=='Escherichia coli', cols]
[70]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag E_coli
276034 210 MPN/100mL NaN NaN
277432 4800 MPN/100mL NaN NaN
277854 74.5 MPN/100mL NaN NaN
277993 553.9 MPN/100mL NaN NaN
278267 87 MPN/100mL NaN NaN
... ... ... ... ...
1460488 219 MPN/100mL NaN NaN
1460533 Not Reported MPN/100mL ResultMeasureValue: "Not Reported" result cann... NaN
1460546 Not Reported MPN/100mL ResultMeasureValue: "Not Reported" result cann... NaN
1460559 59.1 MPN/100mL NaN NaN
1460625 742 MPN/100mL NaN NaN

6251 rows × 4 columns

Combining Salinity and Conductivity

Convert module has various functions to convert from one unit or characteristic to another. Some of these are used within a single characteristic during harmonization (e.g. DO saturation to concentration) while others are intended to model one characteristic as an indicator of another (e.g. estimate salinity from conductivity).

Note: this should only be done after both characteristic fields have been harmonized. Results before and after should be inspected, thresholds for outliers applied, and consider adding a QA_flag for modeled data.

Explore Salinity results:

[71]:
from harmonize_wq import convert
[72]:
# Salinity summary statistics
lst = [x.magnitude for x in list(df['Salinity'].dropna())]
q_sum = sum(lst)
print('Range: {} to {}'.format(min(lst), max(lst)))
print('Results: {} \nMean: {} PSU'.format(len(lst), q_sum/len(lst)))
Range: -0.02 to 48930.0
Results: 267183
Mean: 21.709491748587812 PSU
[73]:
# Identify extreme outliers
[x for x in lst if x >3200]
[73]:
[48930.0]

Other fields like units and QA_flag may help understand what caused high values and what results might need to be dropped from consideration

[74]:
# Columns to focus on
cols = ['ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'QA_flag', 'Salinity']
[75]:
# Look at important fields for max 5 values
salinity_series = df['Salinity'][df['Salinity'].notna()]
salinity_series.sort_values(ascending=False, inplace=True)
df[cols][df['Salinity'].isin(salinity_series[0:5])]
[75]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Salinity
288161 48930 ppth NaN 48930.0 Practical_Salinity_Units
434311 76.57 ppth NaN 76.57 Practical_Salinity_Units
497046 54.8 ppth NaN 54.8 Practical_Salinity_Units
620827 2976 ppth NaN 2976.0 Practical_Salinity_Units
645813 68 ppth NaN 68.0 Practical_Salinity_Units

Detection limits may help understand what caused low values and what results might need to be dropped or updated

[76]:
df = wrangle.add_detection(df, 'Salinity')
cols+=['ResultDetectionConditionText',
       'DetectionQuantitationLimitTypeName',
       'DetectionQuantitationLimitMeasure/MeasureValue',
       'DetectionQuantitationLimitMeasure/MeasureUnitCode']
[77]:
# Look at important fields for min 5 values (often multiple 0.0)
df[cols][df['Salinity'].isin(salinity_series[-5:])]
[77]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Salinity ResultDetectionConditionText DetectionQuantitationLimitTypeName DetectionQuantitationLimitMeasure/MeasureValue DetectionQuantitationLimitMeasure/MeasureUnitCode
25321 0.0 ppth NaN 0.0 Practical_Salinity_Units NaN Lower Quantitation Limit 5.0 ppth
25322 0.0 ppth NaN 0.0 Practical_Salinity_Units NaN Method Detection Level 1.0 ppth
46498 0.0 ppth NaN 0.0 Practical_Salinity_Units NaN Lower Quantitation Limit 5.0 ppth
46499 0.0 ppth NaN 0.0 Practical_Salinity_Units NaN Method Detection Level 1.0 ppth
373948 0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
551972 0.0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
561300 0.0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
737406 -0.02 ppth NaN -0.02 Practical_Salinity_Units NaN NaN NaN NaN
968155 0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
970962 0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
972633 0.00 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
973891 0.00 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
974926 0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
975776 0.00 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
976391 0.00 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
978112 0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
979364 0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
981344 0.00 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
993644 -0.01 ppth NaN -0.01 Practical_Salinity_Units NaN NaN NaN NaN
1180376 0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
1180381 0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
1180467 0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
1180468 0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
1180469 0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
1180470 0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
1183036 0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
1183175 0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
1183176 0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
1183177 0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
1183178 0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
1183179 0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
1183180 0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
1183275 0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
1188638 0.0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
1188639 0.0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
1188683 0.0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
1188754 0.0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
1188811 0.0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
1188812 0.0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
1188813 0.0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
1188814 0.0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
1188815 0.0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
1209506 0.0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN
1219313 0.0 ppth NaN 0.0 Practical_Salinity_Units NaN NaN NaN NaN

Explore Conductivity results:

[78]:
# Create series and inspect Conductivity values
cond_series = df['Conductivity'].dropna()
cond_series
[78]:
481429    626.0 microsiemens / centimeter
486072    688.0 microsiemens / centimeter
503763    606.0 microsiemens / centimeter
504635    606.0 microsiemens / centimeter
507781    633.0 microsiemens / centimeter
577362    775.0 microsiemens / centimeter
580144    776.0 microsiemens / centimeter
581124    776.0 microsiemens / centimeter
583254    776.0 microsiemens / centimeter
588592    775.0 microsiemens / centimeter
Name: Conductivity, dtype: object

Conductivity thresholds from Freshwater Explorer: 10 > x < 5000 us/cm, use a higher threshold for coastal waters

[79]:
# Sort and check other relevant columns before converting (e.g. Salinity)
cols = ['ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'QA_flag', 'Salinity', 'Conductivity']
df.sort_values(by=['Conductivity'], ascending=False, inplace=True)
df.loc[df['Conductivity'].notna(), cols]
[79]:
ResultMeasureValue ResultMeasure/MeasureUnitCode QA_flag Salinity Conductivity
580144 776 uS/cm NaN NaN 776.0 microsiemens / centimeter
581124 776 uS/cm NaN NaN 776.0 microsiemens / centimeter
583254 776 uS/cm NaN NaN 776.0 microsiemens / centimeter
577362 775 uS/cm NaN NaN 775.0 microsiemens / centimeter
588592 775 uS/cm NaN NaN 775.0 microsiemens / centimeter
486072 688 uS/cm NaN NaN 688.0 microsiemens / centimeter
507781 633 uS/cm NaN NaN 633.0 microsiemens / centimeter
481429 626 uS/cm NaN NaN 626.0 microsiemens / centimeter
503763 606 uS/cm NaN NaN 606.0 microsiemens / centimeter
504635 606 uS/cm NaN NaN 606.0 microsiemens / centimeter
[80]:
# Convert values to PSU and write to Salinity
cond_series = cond_series.apply(str)  # Convert to string to convert to dimensionless (PSU)
df.loc[df['Conductivity'].notna(), 'Salinity'] = cond_series.apply(convert.conductivity_to_PSU)
df.loc[df['Conductivity'].notna(), 'Salinity']
[80]:
580144    0.379 dimensionless
581124    0.379 dimensionless
583254    0.379 dimensionless
577362    0.379 dimensionless
588592    0.379 dimensionless
486072    0.335 dimensionless
507781    0.308 dimensionless
481429    0.304 dimensionless
503763    0.294 dimensionless
504635    0.294 dimensionless
Name: Salinity, dtype: object

Datetime

datetime() formats time using dataretrieval and ActivityStart

[81]:
# First inspect the existing unformated fields
cols = ['ActivityStartDate', 'ActivityStartTime/Time', 'ActivityStartTime/TimeZoneCode']
df[cols]
[81]:
ActivityStartDate ActivityStartTime/Time ActivityStartTime/TimeZoneCode
580144 2007-08-15 NaN NaN
581124 2007-08-15 NaN NaN
583254 2007-08-15 NaN NaN
577362 2007-08-15 NaN NaN
588592 2007-08-15 NaN NaN
... ... ... ...
1469287 1955-04-08 NaN NaN
1469288 1955-04-08 NaN NaN
1469289 1957-10-21 14:05:00 EST
1469290 1955-04-08 NaN NaN
1469291 1955-04-08 NaN NaN

1469292 rows × 3 columns

[82]:
# 'ActivityStartDate' presserves date where 'Activity_datetime' is NAT due to no time zone
df = clean.datetime(df)
df[['ActivityStartDate', 'Activity_datetime']]
/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/dataretrieval/utils.py:87: UserWarning: Warning: 100662 incomplete dates found, consider setting datetime_index to False.
  warnings.warn(
[82]:
ActivityStartDate Activity_datetime
580144 2007-08-15 NaT
581124 2007-08-15 NaT
583254 2007-08-15 NaT
577362 2007-08-15 NaT
588592 2007-08-15 NaT
... ... ...
1469287 1955-04-08 NaT
1469288 1955-04-08 NaT
1469289 1957-10-21 1957-10-21 19:05:00+00:00
1469290 1955-04-08 NaT
1469291 1955-04-08 NaT

1469292 rows × 2 columns

Activity_datetime combines all three time component columns into UTC. If time is missing this is NaT so a ActivityStartDate column is used to preserve date only.

Depth

Note: Data are often lacking sample depth metadata

[83]:
# Depth of sample (default units='meter')
df = clean.harmonize_depth(df)
#df.loc[df['ResultDepthHeightMeasure/MeasureValue'].dropna(), "Depth"]
df['ResultDepthHeightMeasure/MeasureValue'].dropna()
[83]:
486072     0.95
507781     0.50
481429     0.00
377563     0.10
378566     0.10
           ...
1363579    0.33
1412499    0.33
1413031    0.30
1414919    0.30
1417055    0.33
Name: ResultDepthHeightMeasure/MeasureValue, Length: 495, dtype: float64

Characteristic to Column (long to wide format)

[84]:
# Split single QA column into multiple by characteristic (rename the result to preserve these QA_flags)
df2 = wrangle.split_col(df)
df2
[84]:
OrganizationIdentifier OrganizationFormalName ActivityIdentifier ActivityStartDate ActivityStartTime/Time ActivityStartTime/TimeZoneCode MonitoringLocationIdentifier ResultIdentifier DataLoggerLine ResultDetectionConditionText ... QA_pH QA_Temperature QA_E_coli QA_Salinity QA_Nitrogen QA_Conductivity QA_Fecal_Coliform QA_DO QA_Carbon QA_Turbidity
580144 NARS_WQX EPA National Aquatic Resources Survey (NARS) NARS_WQX-PRF:0161:1:070815:2 2007-08-15 NaN NaN NARS_WQX-NLA06608-0161 STORET-183201126 NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
581124 NARS_WQX EPA National Aquatic Resources Survey (NARS) NARS_WQX-PRF:0161:1:070815:3.3 2007-08-15 NaN NaN NARS_WQX-NLA06608-0161 STORET-183201150 NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
583254 NARS_WQX EPA National Aquatic Resources Survey (NARS) NARS_WQX-PRF:0161:1:070815:3 2007-08-15 NaN NaN NARS_WQX-NLA06608-0161 STORET-183201135 NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
577362 NARS_WQX EPA National Aquatic Resources Survey (NARS) NARS_WQX-PRF:0161:1:070815:1 2007-08-15 NaN NaN NARS_WQX-NLA06608-0161 STORET-183201115 NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
588592 NARS_WQX EPA National Aquatic Resources Survey (NARS) NARS_WQX-PRF:0161:1:070815:0 2007-08-15 NaN NaN NARS_WQX-NLA06608-0161 STORET-183201107 NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
1469287 USGS-FL USGS Florida Water Science Center nwisfl.01.95500762 1955-04-08 NaN NaN USGS-273926082304501 NWIS-6842541 NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
1469288 USGS-FL USGS Florida Water Science Center nwisfl.01.95500762 1955-04-08 NaN NaN USGS-273926082304501 NWIS-6842544 NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
1469289 USGS-FL USGS Florida Water Science Center nwisfl.01.95800924 1957-10-21 14:05:00 -0500 USGS-02306001 NWIS-6894410 NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
1469290 USGS-FL USGS Florida Water Science Center nwisfl.01.95500782 1955-04-08 NaN NaN USGS-274455082253601 NWIS-6842941 NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
1469291 USGS-FL USGS Florida Water Science Center nwisfl.01.95500782 1955-04-08 NaN NaN USGS-274455082253601 NWIS-6842944 NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

1400615 rows × 117 columns

[85]:
# This expands the single col (QA_flag) out to a number of new columns based on the unique characteristicNames and speciation
print('{} new columns'.format(len(df2.columns) - len(df.columns)))
14 new columns
[86]:
# Note: there are fewer rows because NAN results are also dropped in this step
print('{} fewer rows'.format(len(df)-len(df2)))
68677 fewer rows
[87]:
#Examine Carbon flags from earlier in notebook (note these are empty now because NAN is dropped)
cols = ['ResultMeasureValue', 'ResultMeasure/MeasureUnitCode', 'Carbon', 'QA_Carbon']
df2.loc[df2['QA_Carbon'].notna(), cols]
[87]:
ResultMeasureValue ResultMeasure/MeasureUnitCode Carbon QA_Carbon

Next the table is divided into the columns of interest (main_df) and characteristic specific metadata (chars_df)

[88]:
# split table into main and characteristics tables
main_df, chars_df = wrangle.split_table(df2)
[89]:
# Columns still in main table
main_df.columns
[89]:
Index(['OrganizationIdentifier', 'OrganizationFormalName',
       'ActivityIdentifier', 'MonitoringLocationIdentifier', 'ProviderName',
       'Secchi', 'Temperature', 'DO', 'pH', 'Salinity', 'Nitrogen',
       'Speciation', 'TOTAL NITROGEN_ MIXED FORMS', 'Conductivity',
       'Chlorophyll', 'Carbon', 'Turbidity', 'Sediment', 'Phosphorus',
       'TP_Phosphorus', 'TDP_Phosphorus', 'Other_Phosphorus', 'Fecal_Coliform',
       'E_coli', 'DetectionQuantitationLimitTypeName',
       'DetectionQuantitationLimitMeasure/MeasureValue',
       'DetectionQuantitationLimitMeasure/MeasureUnitCode',
       'Activity_datetime', 'Depth', 'QA_TP_Phosphorus', 'QA_TDP_Phosphorus',
       'QA_Other_Phosphorus', 'QA_Secchi', 'QA_Chlorophyll', 'QA_pH',
       'QA_Temperature', 'QA_E_coli', 'QA_Salinity', 'QA_Nitrogen',
       'QA_Conductivity', 'QA_Fecal_Coliform', 'QA_DO', 'QA_Carbon',
       'QA_Turbidity'],
      dtype='object')
[90]:
# look at main table results (first 5)
main_df.head()
[90]:
OrganizationIdentifier OrganizationFormalName ActivityIdentifier MonitoringLocationIdentifier ProviderName Secchi Temperature DO pH Salinity ... QA_pH QA_Temperature QA_E_coli QA_Salinity QA_Nitrogen QA_Conductivity QA_Fecal_Coliform QA_DO QA_Carbon QA_Turbidity
580144 NARS_WQX EPA National Aquatic Resources Survey (NARS) NARS_WQX-PRF:0161:1:070815:2 NARS_WQX-NLA06608-0161 STORET NaN NaN NaN NaN 0.379 dimensionless ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
581124 NARS_WQX EPA National Aquatic Resources Survey (NARS) NARS_WQX-PRF:0161:1:070815:3.3 NARS_WQX-NLA06608-0161 STORET NaN NaN NaN NaN 0.379 dimensionless ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
583254 NARS_WQX EPA National Aquatic Resources Survey (NARS) NARS_WQX-PRF:0161:1:070815:3 NARS_WQX-NLA06608-0161 STORET NaN NaN NaN NaN 0.379 dimensionless ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
577362 NARS_WQX EPA National Aquatic Resources Survey (NARS) NARS_WQX-PRF:0161:1:070815:1 NARS_WQX-NLA06608-0161 STORET NaN NaN NaN NaN 0.379 dimensionless ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
588592 NARS_WQX EPA National Aquatic Resources Survey (NARS) NARS_WQX-PRF:0161:1:070815:0 NARS_WQX-NLA06608-0161 STORET NaN NaN NaN NaN 0.379 dimensionless ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

5 rows × 44 columns

[91]:
# Empty columns that could be dropped (Mostly QA columns)
cols = list(main_df.columns)
x = main_df.dropna(axis=1, how='all')
[col for col in cols if col not in x.columns]
[91]:
['Sediment',
 'QA_TDP_Phosphorus',
 'QA_Other_Phosphorus',
 'QA_pH',
 'QA_Temperature',
 'QA_E_coli',
 'QA_Salinity',
 'QA_Nitrogen',
 'QA_Conductivity',
 'QA_DO',
 'QA_Carbon',
 'QA_Turbidity']
[92]:
# Map average temperature at each station
results_gdf = visualize.map_measure(main_df, stations_clipped, 'Temperature')
results_gdf.plot(column='mean', cmap='OrRd', legend=True)
[92]:
<Axes: >
../_images/notebooks_Harmonize_Tampa_Detailed_143_1.png