Print fitted model objects and summaries.
# S3 method for splm
print(x, digits = max(3L, getOption("digits") - 3L), ...)
# S3 method for spautor
print(x, digits = max(3L, getOption("digits") - 3L), ...)
# S3 method for summary.splm
print(
x,
digits = max(3L, getOption("digits") - 3L),
signif.stars = getOption("show.signif.stars"),
...
)
# S3 method for summary.spautor
print(
x,
digits = max(3L, getOption("digits") - 3L),
signif.stars = getOption("show.signif.stars"),
...
)
# S3 method for anova.splm
print(
x,
digits = max(getOption("digits") - 2L, 3L),
signif.stars = getOption("show.signif.stars"),
...
)
# S3 method for anova.spautor
print(
x,
digits = max(getOption("digits") - 2L, 3L),
signif.stars = getOption("show.signif.stars"),
...
)
# S3 method for spglm
print(x, digits = max(3L, getOption("digits") - 3L), ...)
# S3 method for spgautor
print(x, digits = max(3L, getOption("digits") - 3L), ...)
# S3 method for summary.spglm
print(
x,
digits = max(3L, getOption("digits") - 3L),
signif.stars = getOption("show.signif.stars"),
...
)
# S3 method for summary.spgautor
print(
x,
digits = max(3L, getOption("digits") - 3L),
signif.stars = getOption("show.signif.stars"),
...
)
# S3 method for anova.spglm
print(
x,
digits = max(getOption("digits") - 2L, 3L),
signif.stars = getOption("show.signif.stars"),
...
)
# S3 method for anova.spgautor
print(
x,
digits = max(getOption("digits") - 2L, 3L),
signif.stars = getOption("show.signif.stars"),
...
)
A fitted model object from splm()
, spautor()
, spglm()
, or spgautor()
or output from
summary(x)
or or anova(x)
.
The number of significant digits to use when printing.
Other arguments passed to or from other methods.
Logical. If TRUE
, significance stars are printed for each coefficient
Printed fitted model objects and summaries with formatting.
spmod <- splm(z ~ water + tarp,
data = caribou,
spcov_type = "exponential", xcoord = x, ycoord = y
)
print(spmod)
#>
#> Call:
#> splm(formula = z ~ water + tarp, data = caribou, spcov_type = "exponential",
#> xcoord = x, ycoord = y)
#>
#>
#> Coefficients (fixed):
#> (Intercept) waterY tarpnone tarpshade
#> 2.04981 -0.08310 0.08005 0.28654
#>
#>
#> Coefficients (exponential spatial covariance):
#> de ie range
#> 0.1109 0.0226 19.1168
#>
print(summary(spmod))
#>
#> Call:
#> splm(formula = z ~ water + tarp, data = caribou, spcov_type = "exponential",
#> xcoord = x, ycoord = y)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -0.41281 -0.20763 -0.11205 0.02956 0.45429
#>
#> Coefficients (fixed):
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) 2.04981 0.31093 6.592 4.33e-11 ***
#> waterY -0.08310 0.06449 -1.289 0.197563
#> tarpnone 0.08005 0.07759 1.032 0.302166
#> tarpshade 0.28654 0.07667 3.737 0.000186 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Pseudo R-squared: 0.3963
#>
#> Coefficients (exponential spatial covariance):
#> de ie range
#> 0.1109 0.0226 19.1168
print(anova(spmod))
#> Analysis of Variance Table
#>
#> Response: z
#> Df Chi2 Pr(>Chi2)
#> (Intercept) 1 43.4600 4.327e-11 ***
#> water 1 1.6603 0.1975631
#> tarp 2 15.4071 0.0004512 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1