Print fitted model objects and summaries.

# S3 method for splm
print(x, digits = max(3L, getOption("digits") - 3L), ...)

# S3 method for spautor
print(x, digits = max(3L, getOption("digits") - 3L), ...)

# S3 method for summary.splm
print(
  x,
  digits = max(3L, getOption("digits") - 3L),
  signif.stars = getOption("show.signif.stars"),
  ...
)

# S3 method for summary.spautor
print(
  x,
  digits = max(3L, getOption("digits") - 3L),
  signif.stars = getOption("show.signif.stars"),
  ...
)

# S3 method for anova.splm
print(
  x,
  digits = max(getOption("digits") - 2L, 3L),
  signif.stars = getOption("show.signif.stars"),
  ...
)

# S3 method for anova.spautor
print(
  x,
  digits = max(getOption("digits") - 2L, 3L),
  signif.stars = getOption("show.signif.stars"),
  ...
)

# S3 method for spglm
print(x, digits = max(3L, getOption("digits") - 3L), ...)

# S3 method for spgautor
print(x, digits = max(3L, getOption("digits") - 3L), ...)

# S3 method for summary.spglm
print(
  x,
  digits = max(3L, getOption("digits") - 3L),
  signif.stars = getOption("show.signif.stars"),
  ...
)

# S3 method for summary.spgautor
print(
  x,
  digits = max(3L, getOption("digits") - 3L),
  signif.stars = getOption("show.signif.stars"),
  ...
)

# S3 method for anova.spglm
print(
  x,
  digits = max(getOption("digits") - 2L, 3L),
  signif.stars = getOption("show.signif.stars"),
  ...
)

# S3 method for anova.spgautor
print(
  x,
  digits = max(getOption("digits") - 2L, 3L),
  signif.stars = getOption("show.signif.stars"),
  ...
)

Arguments

x

A fitted model object from splm(), spautor(), spglm(), or spgautor() or output from summary(x) or or anova(x).

digits

The number of significant digits to use when printing.

...

Other arguments passed to or from other methods.

signif.stars

Logical. If TRUE, significance stars are printed for each coefficient

Value

Printed fitted model objects and summaries with formatting.

Examples

spmod <- splm(z ~ water + tarp,
  data = caribou,
  spcov_type = "exponential", xcoord = x, ycoord = y
)
print(spmod)
#> 
#> Call:
#> splm(formula = z ~ water + tarp, data = caribou, spcov_type = "exponential", 
#>     xcoord = x, ycoord = y)
#> 
#> 
#> Coefficients (fixed):
#> (Intercept)       waterY     tarpnone    tarpshade  
#>     2.04981     -0.08310      0.08005      0.28654  
#> 
#> 
#> Coefficients (exponential spatial covariance):
#>      de       ie    range  
#>  0.1109   0.0226  19.1168  
#> 
print(summary(spmod))
#> 
#> Call:
#> splm(formula = z ~ water + tarp, data = caribou, spcov_type = "exponential", 
#>     xcoord = x, ycoord = y)
#> 
#> Residuals:
#>      Min       1Q   Median       3Q      Max 
#> -0.41281 -0.20763 -0.11205  0.02956  0.45429 
#> 
#> Coefficients (fixed):
#>             Estimate Std. Error z value Pr(>|z|)    
#> (Intercept)  2.04981    0.31093   6.592 4.33e-11 ***
#> waterY      -0.08310    0.06449  -1.289 0.197563    
#> tarpnone     0.08005    0.07759   1.032 0.302166    
#> tarpshade    0.28654    0.07667   3.737 0.000186 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> Pseudo R-squared: 0.3963
#> 
#> Coefficients (exponential spatial covariance):
#>      de      ie   range 
#>  0.1109  0.0226 19.1168 
print(anova(spmod))
#> Analysis of Variance Table
#> 
#> Response: z
#>             Df    Chi2 Pr(>Chi2)    
#> (Intercept)  1 43.4600 4.327e-11 ***
#> water        1  1.6603 0.1975631    
#> tarp         2 15.4071 0.0004512 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1